Abstract

A source of white light with continuously tuned color rendition properties, such as color fidelity, as well as color saturating and color dulling ability has been developed. The source, which is composed of red (R), amber (A), green (G), and blue (B) light-emitting diodes, has a spectral power distribution varied as a weighted sum of “white” RGB and AGB blends. At the RGB and AGB end-points, the source has a highest color saturating and color dulling ability, respectively, as follows from the statistical analysis of the color-shift vectors for 1269 Munsell samples. The variation of the weight parameter allows for continuously traversing all possible metameric RAGB blends, including that with the highest color fidelity. The source was used in a psychophysical experiment on the estimation of the color appearance of familiar objects, such as vegetables, fruits, and soft-drink cans of common brands, at correlated color temperatures of 3000 K, 4500 K, and 6500 K. By continuously tuning the weight parameter, each of 100 subjects selected RAGB blends that, to their opinion, matched lighting characterized as “most saturating,” “most dulling,” “most natural,” and “preferential”. The end-point RGB and AGB blends have been almost unambiguously attributed to “most saturating” and “most dulling” lighting, respectively. RAGB blends that render a highest number of colors with high fidelity have, on average, been attributed to “most natural” lighting. The “preferential” color quality of lighting has, on average, been matched to RAGB blends that provide color rendition with fidelity somewhat reduced in favor of a higher saturation. Our results infer that tunable “color rendition engines” can validate color rendition metrics and provide lighting meeting specific needs and preferences to color quality.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, (1995).
  2. G. Wyszecki and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).
  3. N. Sándor and J. Schanda, “Visual color rendering based on color difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
    [CrossRef]
  4. M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
    [CrossRef]
  5. C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol. 127(2), 129–135 (2011).
    [CrossRef]
  6. D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).
  7. W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
    [CrossRef] [PubMed]
  8. W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).
  9. S. M. Aston and H. E. Belichambers, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
    [CrossRef]
  10. K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
    [CrossRef]
  11. H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am. 73(12), 1709–1713 (1983).
    [CrossRef] [PubMed]
  12. Y. Nakano, H. Tahara, H. Suehara, J. Kohda, and T. Yano, “Application of multispectral camera to color rendering simulator,” in Proceedings of the 10th Congress of the International Colour Association AIC Colour 05, J. L. Nieves and J. Hernández-Andrés, eds. (AIC, 2005), pp. 1625–1628.
  13. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
    [CrossRef]
  14. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
    [CrossRef]
  15. M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
    [CrossRef]
  16. N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
    [CrossRef]
  17. I. Shakir and N. Narendran, “Evaluating white LEDs for outdoor landscape lighting application,” Proc. SPIE 4776, 162–170 (2002).
    [CrossRef]
  18. Commission Internationale de l’Eclairage, “Colour rendering of white LED sources,” Pub. CIE 177, 2007.
  19. S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
    [CrossRef]
  20. S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
    [CrossRef]
  21. M. S. Rea and J. P. Freyssinier, “Color rendering: Beyond pride and prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
    [CrossRef]
  22. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
    [CrossRef] [PubMed]
  23. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
    [CrossRef]
  24. W. Davis and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE 5941, 594111 (2005).
  25. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [CrossRef]
  26. P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35, 85–93 (2010).
  27. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
    [CrossRef]
  28. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
    [CrossRef]
  29. W. Davis, J. L. Gardner, and Y. Ohno, “NIST facility for color rendering simulation,” in Proceedings of the 10th Congress of the International Colour Association AIC Colour 05, J. L. ONieves and J. Hernández-Andrés, eds. (AIC, 2005), pp. 519–522.
  30. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
    [CrossRef] [PubMed]
  31. A. Žukauskas, R. Vaicekauskas, A. Tuzikas, and M. S. Shur, “Solid-state lighting with tailored colour quality,” in Proceedings of the 12th International Symposium on Science and Technology of Light Sources and 3rd International Conference on White LEDs and Solid State Lighting LS-WLED 2010, M. Haverlag, G. M. W. Kroesen, and T. Taguchi, eds. (FAST-LS, 2010), pp. 363–364.
  32. A. Žukauskas and R. Vaicekauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
    [CrossRef]
  33. A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
    [CrossRef]
  34. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
    [CrossRef] [PubMed]
  35. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
    [CrossRef]
  36. V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
    [CrossRef]
  37. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
    [CrossRef]
  38. W. A. Thornton, “Luminosity and color-rendering capability of white light,” J. Opt. Soc. Am. 61(9), 1155–1163 (1971).
    [CrossRef] [PubMed]

2011

C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol. 127(2), 129–135 (2011).
[CrossRef]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[CrossRef]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
[CrossRef] [PubMed]

A. Žukauskas and R. Vaicekauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
[CrossRef]

V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
[CrossRef]

2010

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35, 85–93 (2010).

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

M. S. Rea and J. P. Freyssinier, “Color rendering: Beyond pride and prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[CrossRef]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[CrossRef] [PubMed]

2009

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[CrossRef]

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

2008

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

2007

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

2006

N. Sándor and J. Schanda, “Visual color rendering based on color difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[CrossRef]

2005

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

W. Davis and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE 5941, 594111 (2005).

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

2002

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

I. Shakir and N. Narendran, “Evaluating white LEDs for outdoor landscape lighting application,” Proc. SPIE 4776, 162–170 (2002).
[CrossRef]

1994

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

1983

1974

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

1972

1971

1969

S. M. Aston and H. E. Belichambers, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

1967

D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

Aston, S. M.

S. M. Aston and H. E. Belichambers, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

Belichambers, H. E.

S. M. Aston and H. E. Belichambers, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

Blanc-Gonnet, J.

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[CrossRef]

Bliznikas, Z.

V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
[CrossRef]

Boissard, S.

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

Cui, G.

C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol. 127(2), 129–135 (2011).
[CrossRef]

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[CrossRef]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

W. Davis and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE 5941, 594111 (2005).

Deconinck, G.

Deng, L.

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Fontoynont, M.

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[CrossRef]

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “Color rendering: Beyond pride and prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[CrossRef]

Freyssinier-Nova, J. P.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

Hanselaer, P.

Hashimoto, K.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Ivanauskas, F.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Jost-Boissard, S.

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[CrossRef]

Judd, D. B.

D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

Li, C.

C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol. 127(2), 129–135 (2011).
[CrossRef]

C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol. 127(2), 129–135 (2011).
[CrossRef]

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[CrossRef]

Luo, M. R.

C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol. 127(2), 129–135 (2011).
[CrossRef]

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[CrossRef]

Narendran, N.

I. Shakir and N. Narendran, “Evaluating white LEDs for outdoor landscape lighting application,” Proc. SPIE 4776, 162–170 (2002).
[CrossRef]

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

Nayatani, Y.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

W. Davis and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE 5941, 594111 (2005).

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

Pointer, M. R.

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “Color rendering: Beyond pride and prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[CrossRef]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

Ryckaert, W. R.

Sándor, N.

N. Sándor and J. Schanda, “Visual color rendering based on color difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Schanda, J.

N. Sándor and J. Schanda, “Visual color rendering based on color difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Shakir, I.

I. Shakir and N. Narendran, “Evaluating white LEDs for outdoor landscape lighting application,” Proc. SPIE 4776, 162–170 (2002).
[CrossRef]

Shimizu, M.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Shur, M.

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
[CrossRef]

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

Shur, M. S.

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Smet, K.

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Optimal colour quality of LED clusters based on memory colours,” Opt. Express 19(7), 6903–6912 (2011).
[CrossRef] [PubMed]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[CrossRef]

Smet, K. A. G.

Stanikunas, R.

V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
[CrossRef]

Švegžda, A.

V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
[CrossRef]

Thornton, W. A.

Tuzikas, A.

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
[CrossRef]

Vaicekauskas, R.

A. Žukauskas and R. Vaicekauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Vaitkevicius, H.

V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

van der Burgt, P.

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35, 85–93 (2010).

van Kemenade, J.

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35, 85–93 (2010).

Viliunas, V.

V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
[CrossRef]

Vitta, P.

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

Xu, H.

Yano, T.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

Žukauskas, A.

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
[CrossRef]

A. Žukauskas and R. Vaicekauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express 18(3), 2287–2295 (2010).
[CrossRef] [PubMed]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

Appl. Phys. Lett.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett. 93(2), 021109 (2008).
[CrossRef]

Color Res. Appl.

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[CrossRef]

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based of feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[CrossRef]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[CrossRef]

K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl. 19(3), 171–185 (1994).
[CrossRef]

S. Boissard and M. Fontoynont, “Optimization of LED-based light blendings for object presentation,” Color Res. Appl. 34(4), 310–320 (2009).
[CrossRef]

M. S. Rea and J. P. Freyssinier, “Color rendering: Beyond pride and prejudice,” Color Res. Appl. 35(6), 401–409 (2010).
[CrossRef]

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[CrossRef]

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35, 85–93 (2010).

Color. Technol.

C. Li, M. R. Luo, G. Cui, and C. Li, “Evaluation of the CIE colour rendering index,” Color. Technol. 127(2), 129–135 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevi?ius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1753–1762 (2009).
[CrossRef]

Illum. Eng.

D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng. 62, 593–598 (1967).

Int. J. High Speed Electron. Syst.

A. Žukauskas and R. Vaicekauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst. 20(02), 287–301 (2011).
[CrossRef]

J. Illum. Eng. Soc.

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

J. Mod. Opt.

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D Appl. Phys.

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys. 43(35), 354006 (2010).
[CrossRef]

Lighting Res. Tech.

V. Vili?nas, H. Vaitkevi?ius, R. Stanik?nas, A. Švegžda, and Z. Bliznikas, “LED-based metameric light sources: Rendering the colours of objects and other colour quality criteria,” Lighting Res. Tech. 43(3), 321–330 (2011).
[CrossRef]

S. M. Aston and H. E. Belichambers, “Illumination, color rendering, and visual clarity,” Lighting Res. Tech. 1(4), 259–261 (1969).
[CrossRef]

N. Sándor and J. Schanda, “Visual color rendering based on color difference evaluations,” Lighting Res. Tech. 38(3), 225–239 (2006).
[CrossRef]

Opt. Eng.

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[CrossRef]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[CrossRef]

Opt. Express

Proc. IEEE

M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE 93(10), 1691–1703 (2005).
[CrossRef]

Proc. SPIE

N. Narendran and L. Deng, “Color rendering properties of LED sources,” Proc. SPIE 4776, 61–67 (2002).
[CrossRef]

I. Shakir and N. Narendran, “Evaluating white LEDs for outdoor landscape lighting application,” Proc. SPIE 4776, 162–170 (2002).
[CrossRef]

W. Davis and Y. Ohno, “Toward and improved color rendering metrics,” Proc. SPIE 5941, 594111 (2005).

A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, and M. Shur, “Statistical approach to color rendition properties of solid-state light sources,” Proc. SPIE 8123, 81230X, 81230X-9 (2011).
[CrossRef]

Other

A. Žukauskas, R. Vaicekauskas, A. Tuzikas, and M. S. Shur, “Solid-state lighting with tailored colour quality,” in Proceedings of the 12th International Symposium on Science and Technology of Light Sources and 3rd International Conference on White LEDs and Solid State Lighting LS-WLED 2010, M. Haverlag, G. M. W. Kroesen, and T. Taguchi, eds. (FAST-LS, 2010), pp. 363–364.

W. Davis, J. L. Gardner, and Y. Ohno, “NIST facility for color rendering simulation,” in Proceedings of the 10th Congress of the International Colour Association AIC Colour 05, J. L. ONieves and J. Hernández-Andrés, eds. (AIC, 2005), pp. 519–522.

Commission Internationale de l’Eclairage, “Colour rendering of white LED sources,” Pub. CIE 177, 2007.

Y. Nakano, H. Tahara, H. Suehara, J. Kohda, and T. Yano, “Application of multispectral camera to color rendering simulator,” in Proceedings of the 10th Congress of the International Colour Association AIC Colour 05, J. L. Nieves and J. Hernández-Andrés, eds. (AIC, 2005), pp. 1625–1628.

Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, (1995).

G. Wyszecki and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

CIE 1931 chromaticity diagram. Colored circles, chromaticities of the four LEDs used in the RAGB lamp with tunable color rendition properties; white stars, chromaticities of blackbody at 3000 K (WW) and 4500 K (CW) and of daylight illuminant at 6500 K (DL).

Fig. 2
Fig. 2

Experimental cabinet with the tunable RAGB source mounted on top and illuminated objects placed inside.

Fig. 3
Fig. 3

(a), (b), and (c) Variation of the radiant fluxes of the four colored LED groups within the tunable RAGB source with RGB vs. AGB weight. (d), (e), and (f) The general CRI (pink line), GAI (purple line), general CQS (cyan line), and CPS (brown line) as functions of weight. (g), (h), and (i) Statistical indices CSI (magenta line), CDI (olive line), CFI (black line), and HDI (gray line) as functions of weight. (j), (k), and (l) Percentage of the subjective selections of the weight parameter for illumination characterized as “most saturated” (magenta circles and line), “most dull” (olive triangles and line), “most natural” (black squares and line) and “preferential” (violet diamonds and line) (points, experiment; lines, Gaussian fit); open points with horizontal bars show the mean values and their 95% confidence intervals for the weight selected for “most natural” and “preferential” lighting. The first, second, and third columns show the data for CCTs of 3000 K, 4500 K, and 6500 K, respectively.

Fig. 4
Fig. 4

Properties of the RAGB LED cluster for several values of the AGB vs. RGB weight parameter σ at a CCT of 4500 K. (a), (c), (e), and (g) SPDs that in average have been subjectively identified as providing the “most saturated” (σ = 0), “preferential” (σ = 0.55), “most natural” (σ = 0.78), and “most dulling” (σ = 1) appearance of familiar objects. (b), (d), (f), and (h), corresponding distributions of the color-shift vectors for 218 Munsell samples of value /6 in the a*−b* chromaticity plane of the CIELAB color space. Open points, samples that have colors rendered with high fidelity; arrows, schematic chromaticity shifts of samples that have color distortions, such as increased or decreased saturation as well as distorted hue or luminance (the magnitude of each vector is normalized to the size of the individual MacAdam ellipse as in [27]).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S RAGB ( λ )=σ S AGB ( λ )+( 1σ ) S RGB ( λ ),
{ R RAGB =( 1σ ) R RGB , A RAGB =σ A AGB , G RAGB =σ G AGB +( 1σ ) G RGB , B RAGB =σ B AGB +( 1σ ) B RGB .

Metrics