Abstract

We propose for the first time an E. coli bacteria sensor based on the evanescent field of the fundamental mode of a suspended-core terahertz fiber. The sensor is capable of E. coli detection at concentrations in the range of 104-109 cfu/ml. The polyethylene fiber features a 150 µm core suspended by three deeply sub-wavelength bridges in the center of a 5.1 mm-diameter cladding tube. The fiber core is biofunctionalized with T4 bacteriophages which bind and eventually destroy (lyse) their bacterial target. Using environmental SEM we demonstrate that E. coli is first captured by the phages on the fiber surface. After 25 minutes, most of the bacteria is infected by phages and then destroyed with ~1μm-size fragments remaining bound to the fiber surface. The bacteria-binding and subsequent lysis unambiguously correlate with a strong increase of the fiber absorption. This signal allows the detection and quantification of bacteria concentration. Presented bacteria detection method is label-free and it does not rely on the presence of any bacterial “fingerprint” features in the THz spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Zourob, S. Elwary, and A. P. F. Turner, eds., Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer Science + Business Media, LLC, 2008).
  2. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008).
    [CrossRef] [PubMed]
  3. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [CrossRef] [PubMed]
  4. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008).
    [CrossRef] [PubMed]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  6. T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006).
    [CrossRef]
  7. A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
    [CrossRef]
  8. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
    [CrossRef]
  9. L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
    [CrossRef]
  10. B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009).
    [CrossRef] [PubMed]
  11. P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011).
    [CrossRef] [PubMed]
  12. M. N. Velasco-Garcia, “Optical biosensors for probing at the cellular level: a review of recent progress and future prospects,” Semin. Cell Dev. Biol. 20(1), 27–33 (2009).
    [CrossRef] [PubMed]
  13. S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
    [CrossRef] [PubMed]
  14. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006).
  15. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [CrossRef] [PubMed]
  16. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
    [CrossRef] [PubMed]
  17. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
    [CrossRef]
  18. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
    [CrossRef]
  19. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29(14), 1617–1619 (2004).
    [CrossRef] [PubMed]
  20. L. R. Engelking, Textbook of Veterinary Physiological Chemistry (Teton NewMedia, 2004) Chap.1.
  21. W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000).
    [CrossRef] [PubMed]
  22. A. Bykhovski and B. Gelmont, “The influence of environment on terahertz spectra of biological molecules,” J. Phys. Chem. B 114(38), 12349–12357 (2010).
    [CrossRef] [PubMed]
  23. M. Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [CrossRef] [PubMed]
  24. R. A. Cheville and D. Grischkowsky, “Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor,” J. Opt. Soc. Am. B 16(2), 317–322 (1999).
    [CrossRef]
  25. J. E. K. Laurens and K. E. Oughstun, “Electromagnetic impulse response of triply-distilled water” in Proceedings of IEEE Conference on Ultra-Wideband Short-Pulse Electromagnetics 4 (Tel-Aviv, Israel, 1998), 243–264.
  26. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm?1,” Infrared Phys. 21(4), 225–228 (1981).
    [CrossRef]

2011

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011).
[CrossRef] [PubMed]

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[CrossRef] [PubMed]

2010

A. Bykhovski and B. Gelmont, “The influence of environment on terahertz spectra of biological molecules,” J. Phys. Chem. B 114(38), 12349–12357 (2010).
[CrossRef] [PubMed]

2009

B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009).
[CrossRef] [PubMed]

M. N. Velasco-Garcia, “Optical biosensors for probing at the cellular level: a review of recent progress and future prospects,” Semin. Cell Dev. Biol. 20(1), 27–33 (2009).
[CrossRef] [PubMed]

2008

2007

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

2006

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006).

T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006).
[CrossRef]

2005

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

2004

2000

W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000).
[CrossRef] [PubMed]

1999

1996

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

1989

1981

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm?1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Agger, C.

Arora, P.

P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011).
[CrossRef] [PubMed]

Arya, S. K.

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

Bang, O.

Birch, J. R.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm?1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Brener, I.

Bykhovski, A.

A. Bykhovski and B. Gelmont, “The influence of environment on terahertz spectra of biological molecules,” J. Phys. Chem. B 114(38), 12349–12357 (2010).
[CrossRef] [PubMed]

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Chaudhury, A.

P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011).
[CrossRef] [PubMed]

Cheng, L.

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Cheville, R. A.

Coutaz, J.-L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Dilbaghi, N.

P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011).
[CrossRef] [PubMed]

Dobroiu, A.

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Dromey, J. D.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm?1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Dupuis, A.

Duvillaret, L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Evoy, S.

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

Exter, M.

Fattinger, Ch.

Freeman, M. R.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Garet, F.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Gelmont, B.

A. Bykhovski and B. Gelmont, “The influence of environment on terahertz spectra of biological molecules,” J. Phys. Chem. B 114(38), 12349–12357 (2010).
[CrossRef] [PubMed]

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Globus, T.

T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006).
[CrossRef]

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Grischkowsky, D.

Han, J.

Harsha, S. S.

N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008).
[CrossRef] [PubMed]

Hassani, A.

Hayashi, S.

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Hegmann, F. A.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Heuck, M.

Jensen, J. O.

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006).

Ji, H.

W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000).
[CrossRef] [PubMed]

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006).

Kawase, K.

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Khromova, T.

T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006).
[CrossRef]

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006).

Laman, N.

N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008).
[CrossRef] [PubMed]

Lesurf, J.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm?1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

Li, X.

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Liu, J.

W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000).
[CrossRef] [PubMed]

Liu, T.-A.

Lu, J.-Y.

Lu, M.

W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000).
[CrossRef] [PubMed]

Markos, C.

Mazhorova, A.

McDermott, M. T.

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

Melinger, J. S.

N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008).
[CrossRef] [PubMed]

Miyazawa, T.

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

Naidoo, R.

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

O’Hara, J. F.

Ogawa, Y.

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Otani, C.

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Ott, J. R.

Pan, C.-L.

Peng, J.-L.

Rasmussen, P. D.

Rozé, M.

Samuels, A.

T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006).
[CrossRef]

Samuels, A. C.

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

Shu, W.

W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000).
[CrossRef] [PubMed]

Sindhu, A.

P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011).
[CrossRef] [PubMed]

Singh, A.

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

Singh, R.

Skorobogatiy, M.

Smirnova, E.

Taylor, A. J.

Town, G. E.

Ung, B.

Velasco-Garcia, M. N.

M. N. Velasco-Garcia, “Optical biosensors for probing at the cellular level: a review of recent progress and future prospects,” Semin. Cell Dev. Biol. 20(1), 27–33 (2009).
[CrossRef] [PubMed]

Vlachos, K.

Walther, M.

Woolard, D.

T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006).
[CrossRef]

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Wu, P.

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

You, B.

Yuan, W.

Zhang, J.

Zhang, W.

Analyst (Lond.)

S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Biophys. J.

N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron.

P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996).
[CrossRef]

Infrared Phys.

J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm?1,” Infrared Phys. 21(4), 225–228 (1981).
[CrossRef]

J. Korean Phys. Soc.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006).

J. Mol. Biol.

W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. B

A. Bykhovski and B. Gelmont, “The influence of environment on terahertz spectra of biological molecules,” J. Phys. Chem. B 114(38), 12349–12357 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006).
[CrossRef]

A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005).
[CrossRef]

Semin. Cell Dev. Biol.

M. N. Velasco-Garcia, “Optical biosensors for probing at the cellular level: a review of recent progress and future prospects,” Semin. Cell Dev. Biol. 20(1), 27–33 (2009).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

Other

L. R. Engelking, Textbook of Veterinary Physiological Chemistry (Teton NewMedia, 2004) Chap.1.

J. E. K. Laurens and K. E. Oughstun, “Electromagnetic impulse response of triply-distilled water” in Proceedings of IEEE Conference on Ultra-Wideband Short-Pulse Electromagnetics 4 (Tel-Aviv, Israel, 1998), 243–264.

M. Zourob, S. Elwary, and A. P. F. Turner, eds., Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer Science + Business Media, LLC, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a, b) The THz fiber featuring a 150 µm core suspended by three 20 µm-thick bridges in the center of a 5.1 mm diameter tube, (c) 4 cm-long fiber piece used in the experiments.

Fig. 2
Fig. 2

(a) Schematic of the experimental setup: fiber is placed between the focal points of the two parabolic mirrors, (b) schematic presentation of phages adsorbed onto the fiber core. The capsid adsorbed onto the fiber, while the tail (which is specific to the bacteria) faces towards the cladding for bacteria capturing.

Fig. 3
Fig. 3

SEM images illustrating each step of the experiment (a) step 1- phages are immobilized on the fiber core surface, (b) step 2 – capturing of E.coli bacteria by the phages, and lysis of the bacteria (c) step 3 - fiber is washed with PBS, bacteria chunks remain bound to the core surface.

Fig. 4
Fig. 4

(a) Transmission spectrum of the fiber during each step of the experiment: step 1- black line, only phages, step 2 – red line, transmission of the fiber decreased due binding of E. coli bacteria to the phages, step 3 – blue line, fiber is washed with PBS. Fiber transmission increased but not up to the level of the first step, suggesting that some bacteria (or parts of it) remain bound to the fiber via specific interaction with the phages.(b) difference in transmission between each step of the experiment.

Fig. 5
Fig. 5

Zoom-in of the waveguide core, dashed line marks the area covered with bacteriophages. Bacteria are clustered in the phage-covered surface with the rest of the surface blocked by BSA.

Fig. 6
Fig. 6

SEM images of the fiber core (a) after 20 min since the beginning of the 2nd step; (b) after 30 min before washing with PBS (end of the 2nd step); (c) after 30 min after washing with PBS. The bacteria shape changed from a uniform rod shape to a random shape. Eventually, the bacteria cell wall ruptures and releases intracellular components with only the cell membrane left on the fiber.

Fig. 7
Fig. 7

Absorption losses of the fiber. (a) reference sensorgram; (b) sensorgram for bacteria concentration at 106 cfu/ml as a function of time; (c) Correlation between the changes in the fiber absorption losses and bacteria concentration: difference between base level (absorption losses of the fiber with phages immobilized on the fiber core) and losses of the “washed” fiber is shown in blue triangles, as a function of a concentration. Black dots correspond to the difference between absorption losses of the fiber after 2nd and 3rd steps (before and after fiber washing).

Fig. 8
Fig. 8

SEM images of the fiber core with bacteria concentration of (a) 109 cfu/ml and 10 min interaction time (b) with a concentration of 106 cfu/ml, 10 min interaction time.

Fig. 9
Fig. 9

Transverse distribution of power flow for the fundamental mode of (a) the real waveguide and of (b) the simplified design of the waveguide profile. The field is confined in the central solid core and is guided by total internal reflection.

Fig. 10
Fig. 10

(a) Randomly distributed 1 µm water cylinders on the waveguide core’s surface for a given value of surface coverage. (b) Absorption loss of the fundamental mode for the fiber with a bacteria layer as a function of the bacteria coverage ratio. The crossing of the dash lines in the figure corresponds to the experimentally measured value of the propagation losses minus the theoretically estimated coupling loss for the 109 cfu/ml concentration of bacteria.

Metrics