Abstract

Gravitational wave detectors require linearly polarized single-frequency laser sources with a high fractional TEM00 mode content. We investigated the modal decomposition of a polarization maintaining photonic crystal fiber with a mode field diameter of 29 µm, operating in a single-frequency master-oscillator power-amplifier scheme, with respect to the TEMnm modes. Low degradation of the beam quality with increasing pump power could be observed, while a maximum power in the TEM00 mode of 203 W was achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
    [CrossRef]
  2. N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
    [CrossRef]
  3. C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-power tandem pumped fiber amplifier with an output power of 2.9 kW,” Opt. Lett. 36(16), 3061–3063 (2011).
    [CrossRef] [PubMed]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  5. C. Zhu, I. Hu, X. Ma, and A. Galvanauskas “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.
  6. C. Robin and I. Dajani, “Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications,” Opt. Lett. 36(14), 2641–2643 (2011).
    [CrossRef] [PubMed]
  7. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
    [CrossRef] [PubMed]
  8. M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006).
    [CrossRef] [PubMed]
  9. C. Gréverie, A. Brillet, C. N. Man, W. Chaibi, J. P. Coulon, and K. Feliksik, “High power fiber amplifier for Advanced Virgo,” Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD36.
  10. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large mode area Yb-doped fibers,” J. Opt. Soc. Am. B 25(2), 247–254 (2008).
    [CrossRef]
  11. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurements with an optical resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
    [CrossRef]
  12. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  13. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
    [CrossRef] [PubMed]
  14. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [CrossRef] [PubMed]

2011 (7)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High-power tandem pumped fiber amplifier with an output power of 2.9 kW,” Opt. Lett. 36(16), 3061–3063 (2011).
[CrossRef] [PubMed]

C. Robin and I. Dajani, “Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications,” Opt. Lett. 36(14), 2641–2643 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurements with an optical resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef]

S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
[CrossRef] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

2006 (1)

Bogan, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Dajani, I.

Danzmann, K.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurements with an optical resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef]

Eberhardt, R.

Eidam, T.

Frede, M.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006).
[CrossRef] [PubMed]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Hildebrandt, M.

Jansen, F.

Jauregui, C.

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Jiang, Z.

Kliner, A.

Kluzik, R.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Kracht, D.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006).
[CrossRef] [PubMed]

Kwee, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurements with an optical resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef]

M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006).
[CrossRef] [PubMed]

Limpert, J.

Marciante, J. R.

Mavalvala, N.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

McClelland, D. E.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

Mueller, G.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

Neumann, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Otto, H.-J.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Poeld, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Puncken, O.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Reitze, D. H.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

Robin, C.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Schmidt, O.

Schnabel, R.

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

Schreiber, T.

Seifert, F.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurements with an optical resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef]

Smith, A. V.

Smith, J. J.

Stutzki, F.

Tünnermann, A.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Veltkamp, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Wessels, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Wielandy, S.

Willke, B.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurements with an optical resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef]

M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006).
[CrossRef] [PubMed]

Winkelmann, L.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Wirth, C.

Appl. Phys. B (1)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Gen. Relativ. Gravit. (1)

N. Mavalvala, D. E. McClelland, G. Mueller, D. H. Reitze, R. Schnabel, and B. Willke, “Lasers and optics: looking towards third generation gravitational wave detectors,” Gen. Relativ. Gravit. 43(2), 569–592 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurements with an optical resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef]

Other (2)

C. Zhu, I. Hu, X. Ma, and A. Galvanauskas “Single-frequency and single-transverse-mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output,” Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AMC5.

C. Gréverie, A. Brillet, C. N. Man, W. Chaibi, J. P. Coulon, and K. Feliksik, “High power fiber amplifier for Advanced Virgo,” Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuD36.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. PR: partial reflector, DCM: dichroic mirror.

Fig. 2
Fig. 2

(a) Signal output power at 1064 nm (squares) and fractional TEM00 mode content (triangles) versus absorbed pump power at 976 nm. (b) Output spectrum at 246 W of output power. The resolution bandwidth of the optical spectrum analyzer was set to 0.5 nm.

Fig. 3
Fig. 3

Mode-scan signal on a logarithmic scale at an amplifier output power of 246 W with the result of 91.2% TEM00 mode content.

Metrics