Abstract

We develop a systematic method for characterizing semiconductor-laser phase noise, using a low-speed offline digital coherent receiver. The field spectrum, the FM-noise spectrum, and the phase-error variance measured with such a receiver can completely describe phase-noise characteristics of lasers under test. The sampling rate of the digital coherent receiver should be much higher than the phase-fluctuation speed. However, 1 GS/s is large enough for most of the single-mode semiconductor lasers. In addition to such phase-noise characterization, interpolating the taken data at 1.25 GS/s to form a data stream at 10 GS/s, we can predict the bit-error rate (BER) performance of multi-level modulated optical signals at 10 Gsymbol/s. The BER degradation due to the phase noise is well explained by the result of the phase-noise measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
    [CrossRef]
  2. K. Kikuchi, “Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
    [CrossRef]
  3. K. Kikuchi, “Digital coherent optical communication systems: Fundamentals and future prospects,” IEICE Electron. Express 8, 1642–1662 (2011).
    [CrossRef]
  4. A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.
  5. A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.
  6. K. Kikuchi, “Analyses of wavelength- and polarization-division multiplexed transmission characteristics of optical quadrature-amplitude-modulation signals,” Opt. Express 19, 17985–17995 (2011).
    [CrossRef] [PubMed]
  7. R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.
  8. T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap.3.
  9. K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2, 1024–1033 (1984).
    [CrossRef]
  10. K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
    [CrossRef]
  11. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3?m InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. 21, 1814–1818 (1985).
    [CrossRef]
  12. K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML3.
  13. R. Maher and B. Thomsen, “Dynamic linewidth measurement technique using digital intradyne coherent receivers,” Opt. Express 19, B313–B322 (2011).
    [CrossRef]
  14. A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29, 543–551 (1983).
    [CrossRef]
  15. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in 2008 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2008), NWA4.

2011 (3)

2006 (1)

K. Kikuchi, “Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
[CrossRef]

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
[CrossRef]

1987 (1)

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
[CrossRef]

1985 (1)

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3?m InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. 21, 1814–1818 (1985).
[CrossRef]

1984 (1)

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2, 1024–1033 (1984).
[CrossRef]

1983 (1)

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29, 543–551 (1983).
[CrossRef]

Butrie, T.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Chandrasekhar, S.

A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.

Dentai, A.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Gnauck, A.H.

A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.

Goldfarb, G.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Henmi, N.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2, 1024–1033 (1984).
[CrossRef]

Igarashi, K.

K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML3.

Ishihara, K.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Kato, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Kikuchi, K.

K. Kikuchi, “Digital coherent optical communication systems: Fundamentals and future prospects,” IEICE Electron. Express 8, 1642–1662 (2011).
[CrossRef]

K. Kikuchi, “Analyses of wavelength- and polarization-division multiplexed transmission characteristics of optical quadrature-amplitude-modulation signals,” Opt. Express 19, 17985–17995 (2011).
[CrossRef] [PubMed]

K. Kikuchi, “Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
[CrossRef]

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
[CrossRef]

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3?m InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. 21, 1814–1818 (1985).
[CrossRef]

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2, 1024–1033 (1984).
[CrossRef]

T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap.3.

K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML3.

Kish, F.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Kobayashi, T.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Kuntz, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Lal, V.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Lambert, D.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Liu, X.

A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.

Maher, R.

Malendevich, R.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Masuda, H.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

McNicol, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Missey, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Miyamoto, Y.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Mori, K.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Nagamatsu, M.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2, 1024–1033 (1984).
[CrossRef]

Nagarajan, R.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Nilsson, A.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Okoshi, T.

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3?m InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. 21, 1814–1818 (1985).
[CrossRef]

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2, 1024–1033 (1984).
[CrossRef]

T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap.3.

Peckham, D. W.

A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.

Pleumeekers, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Rahn, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Reffle, M.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Sano, A.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Seimetz, M.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in 2008 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2008), NWA4.

Sun, H.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Tang, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
[CrossRef]

Thomsen, B.

Tsai, H.-S.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Viterbi, A. J.

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29, 543–551 (1983).
[CrossRef]

Viterbi, A. N.

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29, 543–551 (1983).
[CrossRef]

Welch, D.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Winzer, P. J.

A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.

Wu, K.-T.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Yamada, T.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Yamamoto, S.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Yamazaki, E.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Yamazaki, H.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Yoshida, E.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Zhang, J.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

Zhu, B.

A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.

Electron. Lett. (1)

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” Electron. Lett. 23, 885–887 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3?m InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. 21, 1814–1818 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kikuchi, “Phase-diversity homodyne detection of multi-level optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12, 563–570 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. N. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29, 543–551 (1983).
[CrossRef]

IEICE Electron. Express (1)

K. Kikuchi, “Digital coherent optical communication systems: Fundamentals and future prospects,” IEICE Electron. Express 8, 1642–1662 (2011).
[CrossRef]

J. Lightwave Technol. (1)

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2, 1024–1033 (1984).
[CrossRef]

Opt. Express (2)

Other (6)

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in 2008 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2008), NWA4.

K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML3.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in 2011 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2011), OML7.

T. Okoshi and K. Kikuchi, Coherent Optical Communication Systems (KTK/Kluwer, 1988), Chap.3.

A.H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10×224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid transmission over 1,200 km of fiber,” in 2010 OSA Technical Digest of Optical Fiber Communication Conference (Optical Society of America, 2010), PDPB8.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” European Conference on Optical Communication, Sept. 2009, Vienna, Austria, PD2.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Relations among the complex amplitude E(t), the phase difference Δϕτ (t), the field spectrum S(f), the FM-noise spectrum SF (t), and the phase-error variance σϕ (τ)2. Equations (1)(6) relating those to each other are listed in Table 1.

Fig. 2
Fig. 2

(a) FM noise spectrum SF (f), (b) phase-error variance σϕ (τ)2, and (c) S(f) in the ideal case where the FM noise is white.

Fig. 3
Fig. 3

(a) FM noise spectrum SF (f), (b) phase-error variance σϕ (τ)2, and (c) S(f) in the case where the low-frequency FM noise is enhanced.

Fig. 4
Fig. 4

Experimental setup of a digital coherent receiver, which consists of a phase-diversity optical circuit, an LO, and a digital signal processor. The complex amplitude of the beat signal is sampled by a two-channel analog-to-digital converter (ADC) and processed by an offline personal computer (PC).

Fig. 5
Fig. 5

(a) Field spectrum S(f), (b) FM-noise spectrum SF (f), and (c) phase-error variance σϕ (τ)2 of the beat between the signal and LO, when 1/τs = 1.25 GS/s and n = 1.25 × 105. Red curves are theoretical fits using Eqs. (9), (10), and (11).

Fig. 6
Fig. 6

(a) Field spectrum S(f), (b) FM-noise spectrum SF (f), and (c) phase-error variance σϕ (τ)2 of the beat between the signal and LO, when 1/τs = 12.5 MS/s and n = 1.25 × 105. The measurement time is 100 times longer than that in Fig. 5. Red curves are theoretical fits using Eqs. (9), (10), and (11).

Fig. 7
Fig. 7

Time-resolved field spectra. The total measurement time of 10−2 s is divided into ten sections having 10−3-s time intervals, and the field spectrum in each section is calculated in time order from 1 × 10−3 s to 10 × 10−3 s.

Fig. 8
Fig. 8

(a) Field spectrum S(f), (b) FM-noise spectrum SF (f), and (c) phase-error variance σϕ (τ)2 of the DBR laser, when 1/τs = 1.25 GS/s and n = 1.25 × 105. Red curves are theoretical fits using Eqs. (9), (10), and (11).

Fig. 9
Fig. 9

BER characteristics of the QPSK signal calculated as a function of Eb/N0 for the case (1) using two DFB lasers. (a):BER calculated from the 1.25-GS/s data through the interpolation process, and (b):BER calculated directly from the 10-GS/s data. Red curves are theoretical BERs which do not include the phase-noise effect. Black, green, and blue curves are obtained when the averaging span for carrier-phase estimation is 11, 101, and 1001 symbols, respectively.

Fig. 10
Fig. 10

BER characteristics of the QPSK signal calculated as a function of Eb/N0 for the case (2) using DBR and DFB lasers. (a):BER calculated from the 1.25-GS/s data through the interpolation process, and (b):BER calculated directly from the 10-GS/s data. Red curves are theoretical BERs which do not include the phase-noise effect. Black, green, and blue curves are obtained when the averaging span for carrier-phase estimation is 5, 61, and 201 symbols, respectively.

Fig. 11
Fig. 11

BER characteristics of the 16-QAM signal calculated as a function of Eb/N0 for the case (1) using two DFB lasers. (a):BER calculated from the 1.25-GS/s data through the interpolation process, and (b):BER calculated directly from the 10-GS/s data. Red curves are theoretical BERs which do not include the phase-noise effect. Black, green, and blue curves are obtained when the averaging span for carrier-phase estimation is 11, 51, and 101 symbols, respectively.

Fig. 12
Fig. 12

BER characteristics of the 16-QAM signal calculated as a function of Eb/N0 for the case (2) using DBR and DFB lasers. (a):BER calculated from the 1.25-GS/s data through the interpolation process, and (b):BER calculated directly from the 10-GS/s data. Red curves are theoretical BERs which do not include the phase-noise effect. Black, green, and blue curves are obtained when the averaging span for carrier-phase estimation is 11, 41, and 101 symbols, respectively.

Tables (1)

Tables Icon

Table 1 Equations relating the complex amplitude E(t), the phase difference Δϕτ (t), the field spectrum S(f), the FM-noise spectrum SF (t), and the phase-error variance σϕ (τ)2 to each other. �� [*] represents the Fourier transform, and 〈*〉 the ensemble average.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S ( f ) = | 𝒡 [ E ( t ) ] | 2
Δ ϕ τ ( t ) = ϕ n ( t ) ϕ n ( t τ )
σ ϕ ( τ ) 2 = Δ ϕ τ ( t ) 2
S Δ ϕ τ ( f ) = 4 ( sin ( π f τ ) f ) 2 S F ( f )
σ ϕ ( τ ) 2 = 4 0 ( sin ( π f τ ) f ) 2 S F ( f ) d f
S ( f ) = 𝒡 [ exp ( σ ϕ ( τ ) 2 2 ) ]
ϕ n ( t ) = arg ( E ( t ) ) .
f i ( t ) = Δ ϕ τ ( t ) 2 π τ ,
S F ( f ) = δ f π .
σ ϕ ( τ ) 2 = 2 π δ f τ .
S ( f ) = δ f 2 π [ f 2 + ( δ f 2 ) 2 ] .

Metrics