Abstract

We describe a simple 4-PPM demodulator that uses analog delay lines and simple 1-bit comparators to determine the least-significant bit and most-significant bit of the 4-PPM encoded data without additional digital signal processing. We show that with good optical filtering the comparator-based demodulator can theoretically operate with sensitivity only 0.23 dB from the optimum 4-ary receiver. We describe as an example of this approach the demodulator built for the Lunar Laser Communication Demonstration and show measured performance within 1.1 dB of the expected sensitivity. The technique is extendable to higher-order, and higher-symbol-rate orthogonal modulation formats.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, T. H. Wood, R. W. Tkach, P. J. Winzer, E. C. Burrows, and A. R. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express 19(26), B868–B881 (2011).
    [CrossRef] [PubMed]
  2. F. Xu, M.-A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” J. Opt. Commun. Netw. 1(5), 404–415 (2009).
    [CrossRef]
  3. N. W. Spellmeyer, S. L. Bernstein, D. M. Boroson, D. O. Caplan, A. S. Fletcher, S. A. Hamilton, R. J. Murphy, M. Norvig, H. G. Rao, B. S. Robinson, S. J. Savage, R. T. Schulein, M. L. Stevens, and J. P. Wang, “Demonstration of multi-rate thresholded preamplified 16-ary pulse-position-modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThT5.
  4. D. M. Boroson, “A simple, near-optimal implementation of M-ary orthogonal signaling,” MIT Lincoln Laboratory Internal Memorandum, 1–7, 5/7/99.
  5. A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Design of optical pulse position modulation (PPM) translating receiver,” LEOS Annual Meeting Conference Proceedings, 2009. LEOS '09. IEEE, 18–19, 4–8 Oct. 2009.
  6. A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Transmitter and translating receiver design for 64-ary pulse position modulation (PPM),” Proc. SPIE 7587, 75870M (2010).
    [CrossRef]
  7. K. M. Birnbaum and W. H. Farr, “Pulse position modulation/demodulation with picoseconds slot widths,” Proc. SPIE 6877, 68770K (2008).
    [CrossRef]
  8. V. J. Hernandez, A. J. Mendez, R. M. Gagliardi, C. V. Bennett, and W. J. Lennon, “Performance impact of multiple access interference in a 4-ary pulse position modulated optical code division multiple access (PPM/O-CDMA) system,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMR6.
  9. F. Gray, “Pulse code communication,” U.S. Patent 2,632,058, March 17, 1953, (filed Nov. 1947).
  10. H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—III: the dimension of the space of essentially time- and band-limited signals,” Bell Syst. Tech. J. 41(4), 1295–1336 (1962).
  11. P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
    [CrossRef]
  12. W. C. Lindsey, “Error probabilities for rician multichannel reception of binary and n-ary signals,” IEEE Trans. Inf. Theory 10(4), 339–350 (1964).
    [CrossRef]
  13. B. S. Robinson, D. M. Boroson, D. A. Burianek, and D. V. Murphy, “The lunar laser communications demonstration,” Space Optical Systems and Applications (ICSOS),2011International Conference on, 54–57, 11–13 May 2011.
  14. S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
    [CrossRef]
  15. D. O. Caplan, M. L. Stevens, D. M. Boroson, and J. E. Kaufmann, “High-sensitivity variable-rate transmit/receive architecture,” LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting Conf. Proc, 1, 297–298, 1999.
  16. D. O. Caplan, J. J. Carney, R. E. Lafon, and M. L. Stevens, “Design of a 40 Watt 1.5 micron uplink transmitter for Lunar Laser Communications,” Proc. SPIE 8246, 82460M (2012).
    [CrossRef]
  17. M. L. Stevens, D. M. Boroson, and D. O. Caplan, “A novel variable-rate pulse-position modulation system with near quantum limited performance,” LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting Conf. Proc., 1, 301–302, 1999.
  18. B. E. Moision and J. Hamkins, “Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation,” in Interplanetary Network Progress Report 42-161, 1–25 (2005).
  19. D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation laser transmitters for high-speed high-sensitivity laser communications,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), Post deadline paper PDPB12.

2012

D. O. Caplan, J. J. Carney, R. E. Lafon, and M. L. Stevens, “Design of a 40 Watt 1.5 micron uplink transmitter for Lunar Laser Communications,” Proc. SPIE 8246, 82460M (2012).
[CrossRef]

2011

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

X. Liu, S. Chandrasekhar, T. H. Wood, R. W. Tkach, P. J. Winzer, E. C. Burrows, and A. R. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express 19(26), B868–B881 (2011).
[CrossRef] [PubMed]

2010

A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Transmitter and translating receiver design for 64-ary pulse position modulation (PPM),” Proc. SPIE 7587, 75870M (2010).
[CrossRef]

2009

2008

K. M. Birnbaum and W. H. Farr, “Pulse position modulation/demodulation with picoseconds slot widths,” Proc. SPIE 6877, 68770K (2008).
[CrossRef]

2005

B. E. Moision and J. Hamkins, “Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation,” in Interplanetary Network Progress Report 42-161, 1–25 (2005).

1991

P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
[CrossRef]

1964

W. C. Lindsey, “Error probabilities for rician multichannel reception of binary and n-ary signals,” IEEE Trans. Inf. Theory 10(4), 339–350 (1964).
[CrossRef]

1962

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—III: the dimension of the space of essentially time- and band-limited signals,” Bell Syst. Tech. J. 41(4), 1295–1336 (1962).

Alves, D. D.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Aquino, K. A.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Azizoglu, M.

P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
[CrossRef]

Bennett, C. V.

A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Transmitter and translating receiver design for 64-ary pulse position modulation (PPM),” Proc. SPIE 7587, 75870M (2010).
[CrossRef]

Birnbaum, K. M.

K. M. Birnbaum and W. H. Farr, “Pulse position modulation/demodulation with picoseconds slot widths,” Proc. SPIE 6877, 68770K (2008).
[CrossRef]

Bourennane, S.

Burrows, E. C.

Caplan, D. O.

D. O. Caplan, J. J. Carney, R. E. Lafon, and M. L. Stevens, “Design of a 40 Watt 1.5 micron uplink transmitter for Lunar Laser Communications,” Proc. SPIE 8246, 82460M (2012).
[CrossRef]

Carney, J. J.

D. O. Caplan, J. J. Carney, R. E. Lafon, and M. L. Stevens, “Design of a 40 Watt 1.5 micron uplink transmitter for Lunar Laser Communications,” Proc. SPIE 8246, 82460M (2012).
[CrossRef]

Chandrasekhar, S.

Chraplyvy, A. R.

Constantine, S.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Elgin, L. E.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Farr, W. H.

K. M. Birnbaum and W. H. Farr, “Pulse position modulation/demodulation with picoseconds slot widths,” Proc. SPIE 6877, 68770K (2008).
[CrossRef]

Gagliardi, R. M.

A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Transmitter and translating receiver design for 64-ary pulse position modulation (PPM),” Proc. SPIE 7587, 75870M (2010).
[CrossRef]

Greco, J. A.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Hamkins, J.

B. E. Moision and J. Hamkins, “Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation,” in Interplanetary Network Progress Report 42-161, 1–25 (2005).

Hernandez, V. J.

A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Transmitter and translating receiver design for 64-ary pulse position modulation (PPM),” Proc. SPIE 7587, 75870M (2010).
[CrossRef]

Humblet, P. A.

P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
[CrossRef]

Khalighi, M.-A.

Lafon, R. E.

D. O. Caplan, J. J. Carney, R. E. Lafon, and M. L. Stevens, “Design of a 40 Watt 1.5 micron uplink transmitter for Lunar Laser Communications,” Proc. SPIE 8246, 82460M (2012).
[CrossRef]

Landau, H. J.

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—III: the dimension of the space of essentially time- and band-limited signals,” Bell Syst. Tech. J. 41(4), 1295–1336 (1962).

Lindsey, W. C.

W. C. Lindsey, “Error probabilities for rician multichannel reception of binary and n-ary signals,” IEEE Trans. Inf. Theory 10(4), 339–350 (1964).
[CrossRef]

Liu, X.

Mendez, A. J.

A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Transmitter and translating receiver design for 64-ary pulse position modulation (PPM),” Proc. SPIE 7587, 75870M (2010).
[CrossRef]

Moision, B. E.

B. E. Moision and J. Hamkins, “Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation,” in Interplanetary Network Progress Report 42-161, 1–25 (2005).

Pollak, H. O.

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—III: the dimension of the space of essentially time- and band-limited signals,” Bell Syst. Tech. J. 41(4), 1295–1336 (1962).

Robinson, B. S.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Stevens, M. L.

D. O. Caplan, J. J. Carney, R. E. Lafon, and M. L. Stevens, “Design of a 40 Watt 1.5 micron uplink transmitter for Lunar Laser Communications,” Proc. SPIE 8246, 82460M (2012).
[CrossRef]

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Tkach, R. W.

Winzer, P. J.

Wood, T. H.

Xu, F.

Bell Syst. Tech. J.

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—III: the dimension of the space of essentially time- and band-limited signals,” Bell Syst. Tech. J. 41(4), 1295–1336 (1962).

IEEE Trans. Inf. Theory

W. C. Lindsey, “Error probabilities for rician multichannel reception of binary and n-ary signals,” IEEE Trans. Inf. Theory 10(4), 339–350 (1964).
[CrossRef]

in Interplanetary Network Progress Report

B. E. Moision and J. Hamkins, “Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation,” in Interplanetary Network Progress Report 42-161, 1–25 (2005).

J. Lightwave Technol.

P. A. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9(11), 1576–1582 (1991).
[CrossRef]

J. Opt. Commun. Netw.

Opt. Express

Proc. SPIE

A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Transmitter and translating receiver design for 64-ary pulse position modulation (PPM),” Proc. SPIE 7587, 75870M (2010).
[CrossRef]

K. M. Birnbaum and W. H. Farr, “Pulse position modulation/demodulation with picoseconds slot widths,” Proc. SPIE 6877, 68770K (2008).
[CrossRef]

D. O. Caplan, J. J. Carney, R. E. Lafon, and M. L. Stevens, “Design of a 40 Watt 1.5 micron uplink transmitter for Lunar Laser Communications,” Proc. SPIE 8246, 82460M (2012).
[CrossRef]

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. A. Aquino, D. D. Alves, and B. S. Robinson, “Design of a High-Speed Space Modem for the Lunar Laser Communications Demonstration,” Proc. SPIE 7923, 792308, 792308-9 (2011).
[CrossRef]

Other

D. O. Caplan, M. L. Stevens, D. M. Boroson, and J. E. Kaufmann, “High-sensitivity variable-rate transmit/receive architecture,” LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting Conf. Proc, 1, 297–298, 1999.

B. S. Robinson, D. M. Boroson, D. A. Burianek, and D. V. Murphy, “The lunar laser communications demonstration,” Space Optical Systems and Applications (ICSOS),2011International Conference on, 54–57, 11–13 May 2011.

M. L. Stevens, D. M. Boroson, and D. O. Caplan, “A novel variable-rate pulse-position modulation system with near quantum limited performance,” LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting Conf. Proc., 1, 301–302, 1999.

D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation laser transmitters for high-speed high-sensitivity laser communications,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), Post deadline paper PDPB12.

V. J. Hernandez, A. J. Mendez, R. M. Gagliardi, C. V. Bennett, and W. J. Lennon, “Performance impact of multiple access interference in a 4-ary pulse position modulated optical code division multiple access (PPM/O-CDMA) system,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMR6.

F. Gray, “Pulse code communication,” U.S. Patent 2,632,058, March 17, 1953, (filed Nov. 1947).

N. W. Spellmeyer, S. L. Bernstein, D. M. Boroson, D. O. Caplan, A. S. Fletcher, S. A. Hamilton, R. J. Murphy, M. Norvig, H. G. Rao, B. S. Robinson, S. J. Savage, R. T. Schulein, M. L. Stevens, and J. P. Wang, “Demonstration of multi-rate thresholded preamplified 16-ary pulse-position-modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThT5.

D. M. Boroson, “A simple, near-optimal implementation of M-ary orthogonal signaling,” MIT Lincoln Laboratory Internal Memorandum, 1–7, 5/7/99.

A. J. Mendez, V. J. Hernandez, R. M. Gagliardi, and C. V. Bennett, “Design of optical pulse position modulation (PPM) translating receiver,” LEOS Annual Meeting Conference Proceedings, 2009. LEOS '09. IEEE, 18–19, 4–8 Oct. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Comparator-based demodulation of 4-ary orthogonal signaling. (a) Generalized 4-ary orthogonal demodulation with post-detection combining of matched-filter outputs. The mapping of data bits to pulses used for the LLCD 4-PPM demodulator is shown. (b) 4-PPM demodulator implementation with optical delays and post-detection combining. (c) 4-PPM demodulator implementation using a single optical detector and post-detection combining with electrical delays (used for LLCD).

Fig. 2
Fig. 2

Optimum and comparator-based receiver performance for M-ary orthogonal modulation. Solid curves show comparator-based receiver performance. Dashed curves show optimum demodulator performance. 16-ary = blue circles, 8-ary = red squares, 4-ary = black triangles.

Fig. 3
Fig. 3

4-ary comparator-based receiver performance. N is the number of modes given by (2N = 2BT + 1) x (number of polarizations) x 2.

Fig. 4
Fig. 4

LLCD uplink PPM waveforms.

Fig. 5
Fig. 5

LLCD 4-PPM demodulator design.

Fig. 6
Fig. 6

4-PPM waveform evolution through the demodulator. The combination of delays, sums, and differences results in an overlay of pulses that provides an unambiguous determination of the transmitted bits when sampled at the appropriate time shown by the sample clock.

Fig. 7
Fig. 7

Expected and measured eye patterns at the demodulator output. The measured eye patterns were generated using a pattern generator at the input to the demodulator and subtracting the LSB + and LSB- and the MSB + and MSB- output waveforms using an oscilloscope. This subtraction would normally occur internally in the comparators.

Fig. 8
Fig. 8

Block Diagram of the LLCD uplink demodulator and clock recovery. The inset in the upper right shows the 4-PPM spectrum for the higher data rate. The variable-duty cycle format has a strong clock spectral line at the symbol clock rate (half the channel data rate) which is used for clock recovery.

Fig. 9
Fig. 9

Channel bit error rate without coding vs. optical power. 19.44 Mbps (black triangles), 38.88 Mbps (red squares). The decoding threshold for a coded system is shown for reference only.

Fig. 10
Fig. 10

Measured channel error rate performance without coding compared to theory for a comparator-based 4-PPM demodulator with 220 modes. The decoder threshold for a coded system is shown for reference only.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P e = 1 2 N e E 2 N o k=0 N1 c k ( E 2 N o ) k ,
P e = M 2( M1 ) k=1 M1 ( 1 ) k+1 k+1 ( M1 k ) e [ k N s k+1 ] .

Metrics