Abstract

We experimentally demonstrate a stretchable plasmonic structure composed of a monolayer array of gold semishells with dielectric cores on an elastic PDMS substrate. The composite structure is fabricated using simple and inexpensive self-assembly and transfer-printing techniques, and it supports Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of this plasmonic structure can be reconfigured from hexagonal to monoclinic, leading to resonance frequency shifts from 200 THz to 191 THz for the TM polarization and from 200 THz to 198 THz for the TE polarization with a strain up to 20%, respectively. Compared with previously reported tunable plasmonic structures, the reconfiguration of lattice symmetry offers a promising approach to tune the surface plasmon resonance with a polarization-dependent response at the standard telecommunication band, and such tunable plasmonic structure might be exploited in realizing photonic devices such as sensors, switches and filters.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  3. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 46–493 (2008).
    [CrossRef]
  4. S. Xiao, L. Peng, and N. A. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010).
    [CrossRef] [PubMed]
  5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [CrossRef] [PubMed]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef] [PubMed]
  7. H. A. Atwater and A. B. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2006).
    [CrossRef]
  8. X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20, 4455–4459 (2008).
    [CrossRef]
  9. C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun. 284, 799–801 (2011).
    [CrossRef]
  10. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
    [CrossRef]
  11. H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology 19, 435304 (2008).
    [CrossRef] [PubMed]
  12. G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
    [CrossRef]
  13. Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
    [CrossRef]
  14. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express 17, 8542–8547 (2009).
    [CrossRef] [PubMed]
  15. R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
    [CrossRef]
  16. X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
    [CrossRef]
  17. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
    [CrossRef] [PubMed]
  18. Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
    [CrossRef] [PubMed]
  19. S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
    [CrossRef]
  20. T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
    [CrossRef]
  21. Q. G. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19, 23889–23900 (2011).
    [CrossRef] [PubMed]
  22. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
    [CrossRef] [PubMed]
  23. P. V. Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5, 6774–6778 (2011).
    [CrossRef] [PubMed]
  24. L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
    [CrossRef]
  25. CST Microwave Studio, CST GmbH, Germany.

2011

C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun. 284, 799–801 (2011).
[CrossRef]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[CrossRef] [PubMed]

Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
[CrossRef] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

P. V. Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5, 6774–6778 (2011).
[CrossRef] [PubMed]

Q. G. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19, 23889–23900 (2011).
[CrossRef] [PubMed]

2010

S. Xiao, L. Peng, and N. A. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010).
[CrossRef] [PubMed]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
[CrossRef]

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[CrossRef]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

2009

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express 17, 8542–8547 (2009).
[CrossRef] [PubMed]

2008

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology 19, 435304 (2008).
[CrossRef] [PubMed]

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20, 4455–4459 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 46–493 (2008).
[CrossRef]

2006

T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

H. A. Atwater and A. B. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2006).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Atalar, A.

Atwater, H. A.

H. A. Atwater and A. B. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2006).
[CrossRef]

Ayala-Orozco, C.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

Aydinli, A.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Baumberg, J. J.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Brannan, T.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

Cao, Z. S.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

Chen, C. W.

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

Chen, D. M.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Chen, H. L.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology 19, 435304 (2008).
[CrossRef] [PubMed]

Chen, J.

Chen, S. H.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology 19, 435304 (2008).
[CrossRef] [PubMed]

Chen, Y. F.

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

Chen, Y. T.

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

Chiang, Y. L.

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

Cole, R. M.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Ding, Y.

Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
[CrossRef] [PubMed]

Dorpe, P. V.

P. V. Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5, 6774–6778 (2011).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ertas, G.

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Friend, R. H.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20, 4455–4459 (2008).
[CrossRef]

Garland, S.

Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[CrossRef] [PubMed]

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

Han, Z. L.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

Hodgkiss, J. M.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20, 4455–4459 (2008).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 46–493 (2008).
[CrossRef]

Howland, M.

Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
[CrossRef] [PubMed]

Hsieh, C. Y.

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

Hsieh, K. C.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology 19, 435304 (2008).
[CrossRef] [PubMed]

Huang, C. M.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Jeppesen, C.

C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun. 284, 799–801 (2011).
[CrossRef]

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

Jin, P.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

King, N. S.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[CrossRef] [PubMed]

Kocabas, A.

Kristensen, A.

C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun. 284, 799–801 (2011).
[CrossRef]

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

Li, Y.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

Lin, C. H.

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology 19, 435304 (2008).
[CrossRef] [PubMed]

Liu, X. H.

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
[CrossRef]

X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[CrossRef]

Ma, R.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Mahajan, S.

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malureanu, R.

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

Mortensen, N. A.

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

S. Xiao, L. Peng, and N. A. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010).
[CrossRef] [PubMed]

Mortensenb, N. A.

C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun. 284, 799–801 (2011).
[CrossRef]

Nordlander, P.

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[CrossRef] [PubMed]

Olcum, S.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Pan, T.

Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
[CrossRef] [PubMed]

Peng, L.

S. Xiao, L. Peng, and N. A. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010).
[CrossRef] [PubMed]

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Polman, A. B.

H. A. Atwater and A. B. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2006).
[CrossRef]

Revzin, A.

Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
[CrossRef] [PubMed]

Shi, L.

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
[CrossRef]

X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[CrossRef]

Shih, H. Y.

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Sun, B.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20, 4455–4459 (2008).
[CrossRef]

Sun, J.

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

Tang, C. J.

Q. G. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19, 23889–23900 (2011).
[CrossRef] [PubMed]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

Tazawa, M.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Wang, C. H.

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

Wang, Q. G.

Wang, Z. L.

Q. G. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19, 23889–23900 (2011).
[CrossRef] [PubMed]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[CrossRef]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Xiao, S.

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

S. Xiao, L. Peng, and N. A. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010).
[CrossRef] [PubMed]

Xiao, S. S.

C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun. 284, 799–801 (2011).
[CrossRef]

Xu, G.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Ye, J.

P. V. Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5, 6774–6778 (2011).
[CrossRef] [PubMed]

Yin, H. W.

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Zhan, P.

Q. G. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19, 23889–23900 (2011).
[CrossRef] [PubMed]

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

Zhang, J. J.

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20, 4455–4459 (2008).
[CrossRef]

Zhu, X. L.

X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[CrossRef]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
[CrossRef]

Zi, J.

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
[CrossRef]

X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[CrossRef]

ACS Nano

N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano 5, 7254–7262 (2011).
[CrossRef] [PubMed]

P. V. Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano 5, 6774–6778 (2011).
[CrossRef] [PubMed]

Adv. Mater.

X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20, 4455–4459 (2008).
[CrossRef]

Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater. 23, 5551–5556 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett. 97, 071116 (2010).
[CrossRef]

R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett. 95, 154103 (2009).
[CrossRef]

Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett. 96, 041904 (2010).
[CrossRef]

L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97, 251111 (2010).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 46–493 (2008).
[CrossRef]

J. Appl. Phys.

G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104, 053102 (2008).
[CrossRef]

Langmuir

J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26, 7859–7864 (2010).
[CrossRef] [PubMed]

Nano Lett.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008).
[CrossRef]

Nano Res.

X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[CrossRef]

Nanotechnology

H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology 19, 435304 (2008).
[CrossRef] [PubMed]

Nat. Mat.

H. A. Atwater and A. B. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat. 9, 205–213 (2006).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun. 284, 799–801 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Science

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[CrossRef] [PubMed]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

CST Microwave Studio, CST GmbH, Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scheme for fabricating two-dimensional arrays of opening-up gold semishells with PS cores. (b) Top-down and cross-sectional (lower inset) scanning electron microscopy (SEM) images of a gold semishell array on a PDMS substrate and a light diffraction pattern (left-upper inset). The diameter of the PS core is 1.5 μm. (c) Optical micrograph of a fabricated sample with wafer-scale area and high flexibility.

Fig. 2
Fig. 2

Transmittance spectra of the plasmonic structure at different incident angles measured by free-space optical spectroscopy for the (a) TE and (b) TM polarization. For clarity, the individual spectra have been displaced by −5 dB. Dotted lines indicate transmission dip shifts corresponding to the angle-dependent resonance of coupled surface plasmons. Insets are sketches of the arrayed gold semishells with PS cores on a PDMS substrate with coordinates.

Fig. 3
Fig. 3

Schematic illustrations and their corresponding SEM images of the plasmonic structures (a, c) before and (b, d) after uniaxial strain applied along the x-direction.

Fig. 4
Fig. 4

(a) Transmittance spectra of the stretchable plasmonic structure under different applied strain for both TE and TM polarized light. The individual spectra have been displaced by +5 dB for clarity. Arrows indicate transmission dip shifts corresponding to stretch-tunable plasmonic resonances. (b) Simulated transmittance spectra maps as a function of strain where the squares and circles represent the measured transmission dips for both TE and TM polarization, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K sp = K || + G m n

Metrics