Abstract

We report a compact CW KGW Raman laser with intracavity nonlinear mixing, pumped by the intracavity field of a VECSEL. By temperature tuning an intracavity LBO crystal, we obtained two separate tunable emissions bands, namely 548.5 - 566 nm for sum-frequency-generation (SFG) of the fundamental and Stokes wavelengths, and 577.5 - 596 nm for second-harmonic-generation (SHG) of the Stokes wavelength. The maximum output powers for SFG and SHG were 0.8W @ 560nm and 0.52W @ 592.5nm, with corresponding diode-to-visible optical conversion efficiencies of 4.2% and 2.9%. These preliminary results show strong potential for expanding the spectral coverage of VECSEL lasers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetov, “VECSEL semiconductor lasers: A path to high-power, quality beam and UV to IR wavelength by design,” in Semiconductor Disk Lasers: Physics and Technology, O. G. Okhotnikov, ed. (Wiley Online Library, 2010), 1–71.
  2. S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
    [CrossRef]
  3. N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
    [CrossRef]
  4. T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
    [CrossRef]
  5. M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
    [CrossRef]
  6. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd: YAG lasers,” J. Opt. Soc. Am. B 3(9), 1175–1180 (1986).
    [CrossRef]
  7. A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
    [CrossRef]
  8. D. J. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009).
    [CrossRef] [PubMed]
  9. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
    [CrossRef] [PubMed]
  10. D. C. Parrotta, W. Lubeigt, A. J. Kemp, D. Burns, M. D. Dawson, and J. E. Hastie, “Continuous-wave Raman laser pumped within a semiconductor disk laser cavity,” Opt. Lett. 36(7), 1083–1085 (2011).
    [CrossRef] [PubMed]
  11. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Tunable continuous-wave diamond Raman laser,” Opt. Express 19(24), 24165–24170 (2011).
    [CrossRef] [PubMed]
  12. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
    [CrossRef] [PubMed]
  13. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
    [CrossRef] [PubMed]
  14. T. D. Raymond, W. J. Alford, M. H. Crawford, and A. A. Allerman, “Intracavity frequency doubling of a diode-pumped external-cavity surface-emitting semiconductor laser,” Opt. Lett. 24(16), 1127–1129 (1999).
    [CrossRef] [PubMed]
  15. A. J. Lee, J. Lin, and H. M. Pask, “Near-infrared and orange-red emission from a continuous-wave, second-Stokes self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(18), 3000–3002 (2010).
    [CrossRef] [PubMed]

2011 (2)

2010 (4)

2009 (1)

2008 (3)

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

2003 (1)

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

1999 (1)

1986 (1)

Alford, W. J.

Allerman, A. A.

Baer, T.

Burns, D.

Chae, S.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Chatterjee, S.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

Chernikov, A.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

Cho, Y. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Crawford, M. H.

Dawson, M. D.

Dekker, P.

Dunn, M. H.

Fallahi, M.

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Guina, M.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Hader, J.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Harkonen, A.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Hastie, J. E.

Hessenius, C.

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Hopkins, J. M.

Jeon, H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Jeong, C. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Kaneda, Y.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Kemp, A. J.

Kim, J.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Koch, M.

Koch, S. W.

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Kohler, K.

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

Kunert, B.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Lee, A. J.

Lee, S. N.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Leinonen, T.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Li, F.

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Li, H.

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Lin, J.

Lubeigt, W.

Manz, C.

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

Moloney, J. V.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Morozov, Y. A.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Moser, R.

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

Okhotnikov, O. G.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Orsila, L.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Park, S. H.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Park, Y.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Parrotta, D. C.

Pask, H. M.

Pessa, M.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Piper, J. A.

Rattunde, M.

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

Rautiainen, J.

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

Raymond, T. D.

Rosener, B.

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

Sakong, T.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Scheller, M.

Schulz, N.

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

Spence, D. J.

Stolz, W.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

Stothard, D. J.

Wagner, J.

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

Wang, T. L.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

Yarborough, J. M.

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

Yeom, G. Y.

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003).
[CrossRef]

N. Schulz, B. Rosener, R. Moser, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, “An improved active region concept for highly efficient GaSb-based optically in-well pumped vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 93(18), 181113 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett. 22(9), 661–663 (2010).
[CrossRef]

M. Fallahi, F. Li, Y. Kaneda, C. Hessenius, J. Hader, H. Li, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008).
[CrossRef]

A. Harkonen, J. Rautiainen, T. Leinonen, Y. A. Morozov, L. Orsila, M. Guina, M. Pessa, and O. G. Okhotnikov, “Intracavity sum-frequency generation in dual-wavelength semiconductor disk laser,” IEEE Photon. Technol. Lett. 19(19), 1550–1552 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (3)

Other (1)

M. Kuznetov, “VECSEL semiconductor lasers: A path to high-power, quality beam and UV to IR wavelength by design,” in Semiconductor Disk Lasers: Physics and Technology, O. G. Okhotnikov, ed. (Wiley Online Library, 2010), 1–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of VECSEL pumped CW Raman laser. SD: semiconductor disc; HS: diamond heat-spreader; BF: birefringent filter; DM: dichroic mirror; M1: output coupler.

Fig. 2
Fig. 2

Output and intracavity power of Stokes and fundamental optical fields vs. absorbed pump power. Inset shows the normalized Stokes output tuning by rotating BF.

Fig. 3
Fig. 3

Tuning of visible emissions from 577.5 to 596 nm by SHG and from 548.5 to 566 nm by SFG.

Fig. 4
Fig. 4

Power transfer diagram for 592.5 and 560.0 nm emissions.

Fig. 5
Fig. 5

Optical spectrum of (a) fundamental and first-Stokes wavelengths with/without SRS; (b) visible wavelength of 560nm and 592.5nm

Metrics