Abstract

The optical properties of plasmonic crystals consisting of triangular lattices are theoretically investigated using rigorous coupled-wave analysis. Two types of structures were analyzed, one composed of an array of short cylindrical pillars on a flat metal surface and the other composed of an array of shallow cylindrical holes formed in a flat metal surface. The dispersion relations and radiation properties of the second and the third bands around the Γ point in the first Brillouin zone were investigated. We found these properties to be highly dependent on the radii of the cylindrical pillars and holes relative to the lattice constant. We also examined the influence on the dispersion relations and radiation properties of the deviation of the cross-section of the pillars and holes from a perfect circle.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 772670–2673 (1996).
    [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
    [CrossRef] [PubMed]
  4. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8378–386 (2002).
    [CrossRef]
  5. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic bandgap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
    [CrossRef]
  6. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
    [CrossRef]
  7. J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302–2304 (2005).
    [CrossRef] [PubMed]
  8. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
    [CrossRef]
  9. M. G. Weber and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B 31, 2510–2513 (1985).
    [CrossRef]
  10. D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
    [CrossRef]
  11. W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
    [CrossRef]
  12. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  13. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
    [CrossRef]
  14. Z. Zhu and T. G. Brown, “Nonperturbative analysis of cross coupling in corrugated metal films,” J. Opt. Soc. Am. A 17, 1798–1806 (2000).
    [CrossRef]
  15. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67, 235404 (2003).
    [CrossRef]
  16. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
    [CrossRef]
  17. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
    [CrossRef]
  18. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17, 8294–8301 (2009).
    [CrossRef] [PubMed]
  19. M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
    [CrossRef]
  20. A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
    [CrossRef]
  21. R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
    [CrossRef]
  22. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994).
    [CrossRef]
  23. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  25. M. Plihal and A. A. Maradudin, “Photonic band structure of two dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
    [CrossRef]
  26. K. Sakai, J. Yue, and S. Noda, “Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization,” Opt. Express 16, 6033–6040 (2008).
    [CrossRef] [PubMed]
  27. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
    [CrossRef]

2009

2008

K. Sakai, J. Yue, and S. Noda, “Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization,” Opt. Express 16, 6033–6040 (2008).
[CrossRef] [PubMed]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

2006

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

2005

J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302–2304 (2005).
[CrossRef] [PubMed]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

2004

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic bandgap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

2003

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67, 235404 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8378–386 (2002).
[CrossRef]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[CrossRef]

2001

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

2000

1999

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

1997

1996

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 772670–2673 (1996).
[CrossRef] [PubMed]

1995

D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

1994

1993

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[CrossRef]

1991

M. Plihal and A. A. Maradudin, “Photonic band structure of two dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

1985

M. G. Weber and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B 31, 2510–2513 (1985).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8378–386 (2002).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 772670–2673 (1996).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

Baudrion, A. -L.

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Bozhevolnyi, S. I.

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Bradberry, G. W.

D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
[CrossRef]

Bräuer, R.

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[CrossRef]

Brown, T. G.

Bryngdahl, O.

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cotter, N. P. K.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
[CrossRef]

Dereux, A.

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Feng, J.

J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302–2304 (2005).
[CrossRef] [PubMed]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Gifford, D. K.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

H’Dhili, F.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic bandgap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[CrossRef]

Hall, D. G.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

Hobson, P. A.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8378–386 (2002).
[CrossRef]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67, 235404 (2003).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17, 8294–8301 (2009).
[CrossRef] [PubMed]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302–2304 (2005).
[CrossRef] [PubMed]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic bandgap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[CrossRef]

Kitoson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 772670–2673 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

Kretschmann, M.

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[CrossRef]

Lalanne, P.

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Lecamp, G.

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Li, L.

Maradudin, A. A.

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

Mills, D. L.

M. G. Weber and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B 31, 2510–2513 (1985).
[CrossRef]

Nash, D. J.

D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

Noda, S.

Noponen, E.

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17, 8294–8301 (2009).
[CrossRef] [PubMed]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Opt. Lett. 30, 2302–2304 (2005).
[CrossRef] [PubMed]

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic bandgap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[CrossRef]

Plihal, M.

M. Plihal and A. A. Maradudin, “Photonic band structure of two dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

Sage, I.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8378–386 (2002).
[CrossRef]

Sakai, K.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67, 235404 (2003).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 772670–2673 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

Schröter, U.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17, 8294–8301 (2009).
[CrossRef] [PubMed]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Turunen, J.

Wasey, J. A. E.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8378–386 (2002).
[CrossRef]

Weber, M. G.

M. G. Weber and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B 31, 2510–2513 (1985).
[CrossRef]

Weeber, J. -C.

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

Wood, E. L.

D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
[CrossRef]

Yue, J.

Zhu, Z.

Appl. Phys. Lett.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic bandgap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[CrossRef]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8378–386 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

J. Mod. Opt.

D. J. Nash, N. P. K. Cotter, E. L. Wood, G. W. Bradberry, and J. R. Sambles, “Examination of the +1, ?1 surface plasmon mini-gap on a gold grating,” J. Mod. Opt. 42, 243–248 (1995).
[CrossRef]

J. Opt. Soc. Am. A

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

R. Bräuer and O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

W. L. Barnes, T. W. Preist, S. C. Kitoson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on grating,” Phys. Rev. B 51, 11164– 11168 (1995).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66, 245408 (2002).
[CrossRef]

A. -L. Baudrion, J. -C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74, 125406 (2006).
[CrossRef]

M. G. Weber and D. L. Mills, “Symmetry and reflectivity of diffraction gratings at normal incidence,” Phys. Rev. B 31, 2510–2513 (1985).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67, 235404 (2003).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77, 115425 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

M. Plihal and A. A. Maradudin, “Photonic band structure of two dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

Phys. Rev. Lett.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 772670–2673 (1996).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguideing in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Positive plasmonic crystal with a cylindrical pillar array and (b) negative plasmonic crystal with a cylindrical air-hole array. The radius and the height, or the depth, of the cylinders are r and d, respectively. The lattice constant is Λ. The polar angle and the azimuthal angle of the incident plane wave are defined as shown. (c) The dispersion relation of a plasmonic crystal formed of a triangular lattice with infinitesimal modulation depth. An ideal Drude metal with plasma frequency ωp and lattice constant Λ = ωp/2c is assumed. Only −1, 0, and +1 diffraction orders for both directions are taken into account.

Fig. 2
Fig. 2

The calculated absorptance for the positive plasmonic crystals with various pillar radii, showing normalized absorptance in terms of the energy E versus the in-plane wave vector k|| of incident light. Brighter areas indicate higher absorptance. Red represents p-polarized incidence, and blue represents s-polarized incidence.

Fig. 3
Fig. 3

The calculated absorptance for the negative plasmonic crystals with various hole radii, showing normalized absorptance in terms of the energy E versus the in-plane wave vector k|| of incident light. Colors and brightnesses have the same meanings as in Fig. 2.

Fig. 4
Fig. 4

Wave-vector diagrams of radiation and surface plasmons in a triangular lattice, when the in-plane wave vector k|| of the radiation is parallel to (a) the Γ-M direction and (b) the Γ-K direction. Vectors K1 and K2 are the reciprocal lattice vectors. Vectors kj (j = 1,..., 6) are the wave vectors of surface plasmons. Hexagons indicate the first Brillouin zone.

Fig. 5
Fig. 5

(a) Assumed Kretschmann configuration for calculating plasmon modes at k|| = K/2. Calculated absorptance in terms of the energy, E, versus the relative cylinder radius, r/Λ, for (b)(c) positive plasmonic crystals and (d)(e) negative ones, for (b)(d) p-polarized incidence and (c)(e) s-polarized incidence.

Fig. 6
Fig. 6

Absorptance maps calculated for a positive plasmonic crystal consisting of an elliptic pillar array. The major axis of each elliptic pillar is a = Λ / 3, and the ratio of the minor axis to the major axis is b/a = 0.5. Azimuthal angle of the plane of incidence is denoted by ϕ.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k i = k + m K 1 + n K 2

Metrics