Abstract

This paper reports the continuous fabrication of dual-side nano-structured anti-reflection protective layer for performance enhancement of solar cells using plasma sputtering and infrared assisted roller embossing techniques. Nano-structures were first deposited onto the surface of glass substrates using the plasma sputtering technique. After electroforming, a nickel master mold containing nano-array of 30 nm was obtained. The mold was then attached to the surfaces of the two metallic rollers in an infrared assisted roll-to-roll embossing facility. The embossing facility was used to replicate the nano-structures onto 60 μm thick polyethylene terephthalate (PET) films in the experiments. The embossed films were characterized using UV–vis spectrophotometer, atomic force microscope (AFM), and scanning electron microscope (SEM); its total conversion efficiency for solar cells was also measured by a solar simulator. The experimental results showed that the fabricated films could effectively reduce the reflectance and increase the conversion efficiency of solar cells. The proposed method shows great potential for fast fabrication of the anti-reflection protective layer of solar cells due to its simplicity and versatility.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. El Chaar, L. A. Lamont, and N. El Zein, “Review of photovoltaic technologies,” Renew. Sustain. Energy Rev. 15(5), 2165–2175 (2011).
    [CrossRef]
  2. Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
    [CrossRef]
  3. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
    [CrossRef]
  4. N. Shibata, “Plasma-chemical vapor-deposited silicon oxide/silicon oxynitride double-layer antireflective coating for solar cells,” Jpn. J. Appl. Phys. 30(Part 1, No. 5), 997–1001 (1991).
    [CrossRef]
  5. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [CrossRef]
  6. S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
    [CrossRef]
  7. J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
    [CrossRef]
  8. K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lighography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
    [CrossRef]
  9. J. T. Wu, S. Y. Yang, W. C. Deng, and W. Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng. 87(10), 1951–1954 (2010).
    [CrossRef]
  10. K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
    [CrossRef]
  11. T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
    [CrossRef]

2011 (3)

L. El Chaar, L. A. Lamont, and N. El Zein, “Review of photovoltaic technologies,” Renew. Sustain. Energy Rev. 15(5), 2165–2175 (2011).
[CrossRef]

K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lighography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[CrossRef]

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[CrossRef]

2010 (2)

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

J. T. Wu, S. Y. Yang, W. C. Deng, and W. Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng. 87(10), 1951–1954 (2010).
[CrossRef]

2009 (2)

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[CrossRef]

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

2008 (1)

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

1997 (1)

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[CrossRef]

1991 (2)

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

N. Shibata, “Plasma-chemical vapor-deposited silicon oxide/silicon oxynitride double-layer antireflective coating for solar cells,” Jpn. J. Appl. Phys. 30(Part 1, No. 5), 997–1001 (1991).
[CrossRef]

Bae, B. J.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Chang, W. Y.

J. T. Wu, S. Y. Yang, W. C. Deng, and W. Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng. 87(10), 1951–1954 (2010).
[CrossRef]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

Cheng, C. W.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[CrossRef]

Choi, K. W.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Deng, W. C.

J. T. Wu, S. Y. Yang, W. C. Deng, and W. Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng. 87(10), 1951–1954 (2010).
[CrossRef]

El Chaar, L.

L. El Chaar, L. A. Lamont, and N. El Zein, “Review of photovoltaic technologies,” Renew. Sustain. Energy Rev. 15(5), 2165–2175 (2011).
[CrossRef]

El Zein, N.

L. El Chaar, L. A. Lamont, and N. El Zein, “Review of photovoltaic technologies,” Renew. Sustain. Energy Rev. 15(5), 2165–2175 (2011).
[CrossRef]

Fukui, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[CrossRef]

Green, M. A.

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Han, K. S.

K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lighography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[CrossRef]

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[CrossRef]

Hong, E. J.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Hong, S. H.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Inomata, Y.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[CrossRef]

Jiang, B.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Jiang, P.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Kim, D.

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[CrossRef]

Lamont, L. A.

L. El Chaar, L. A. Lamont, and N. El Zein, “Review of photovoltaic technologies,” Renew. Sustain. Energy Rev. 15(5), 2165–2175 (2011).
[CrossRef]

Lee, H.

K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lighography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[CrossRef]

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[CrossRef]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[CrossRef]

Shibata, N.

N. Shibata, “Plasma-chemical vapor-deposited silicon oxide/silicon oxynitride double-layer antireflective coating for solar cells,” Jpn. J. Appl. Phys. 30(Part 1, No. 5), 997–1001 (1991).
[CrossRef]

Shin, J. H.

K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lighography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[CrossRef]

Shirasawa, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[CrossRef]

Sun, C. H.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Sun, K. W.

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

Wu, J. T.

J. T. Wu, S. Y. Yang, W. C. Deng, and W. Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng. 87(10), 1951–1954 (2010).
[CrossRef]

Wu, P. H.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[CrossRef]

Wu, T. M.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[CrossRef]

Yang, S. Y.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[CrossRef]

J. T. Wu, S. Y. Yang, W. C. Deng, and W. Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng. 87(10), 1951–1954 (2010).
[CrossRef]

Yao, T. F.

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[CrossRef]

Yoon, W. Y.

K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lighography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[CrossRef]

Zhao, J.

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Electron. Mater. Lett. (1)

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Shibata, “Plasma-chemical vapor-deposited silicon oxide/silicon oxynitride double-layer antireflective coating for solar cells,” Jpn. J. Appl. Phys. 30(Part 1, No. 5), 997–1001 (1991).
[CrossRef]

Microelectron. Eng. (2)

J. T. Wu, S. Y. Yang, W. C. Deng, and W. Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng. 87(10), 1951–1954 (2010).
[CrossRef]

T. F. Yao, P. H. Wu, T. M. Wu, C. W. Cheng, and S. Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng. 88(9), 2908–2912 (2011).
[CrossRef]

Renew. Sustain. Energy Rev. (1)

L. El Chaar, L. A. Lamont, and N. El Zein, “Review of photovoltaic technologies,” Renew. Sustain. Energy Rev. 15(5), 2165–2175 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells (4)

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[CrossRef]

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[CrossRef]

K. S. Han, J. H. Shin, W. Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lighography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[CrossRef]

K. S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells 93(8), 1214–1217 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematically the plasma sputtering process.

Fig. 2
Fig. 2

SEM photographs of glass substrates subjected to different sputtering conditions (as listed in Table 1).

Fig. 3
Fig. 3

(a) SEM, and (b) AFM photos of the Ni mold (Ra=21.5 nm).

Fig. 4
Fig. 4

(a) The IR assisted roll-to-roll embossing device and (b) the embossing rollers.

Fig. 5
Fig. 5

Influence of (a) roller temperature, (b) embossing pressure, and (c) rolling speed on the replication quality of embossed nanostructures (the other processing parameters were fixed during each test trial).

Fig. 6
Fig. 6

(a) SEM and (b) AFM images of a replicated nanostructure (Ra=20.9 nm).

Fig. 7
Fig. 7

Transmittance and reflectance of the solar cell comparing the flat layer and the nano-structured layer.

Fig. 8
Fig. 8

I-V characteristics of the solar cell with and without nano-structured patterns.

Tables (2)

Tables Icon

Table 1 Processing parameters used for the plasma sputtering experiments

Tables Icon

Table 2 Optimal processing parameters for roller embossing of the anti-reflection films

Metrics