Abstract

Raman spectroscopy is a powerful tool for investigating many fundamental properties of nanostructures, but extrinsic effects including background scattering and laser-induced heating can limit the analysis of intrinsic properties. A thin SiO2 dielectric coating is found to enhance the Raman signal from a single Ge nanowire by a factor of two as a result of wave interference. Consequently, the coated nanowire experiences less heating than a bare nanowire at equivalent signal intensities. The results demonstrate a simple and effective method to extend the limits of Raman analysis on single nanostructures and facilitate their characterization.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  3. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]
  4. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
    [CrossRef] [PubMed]
  5. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
    [CrossRef]
  6. L. Y. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett. 96(15), 157402 (2006).
    [CrossRef] [PubMed]
  7. S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett. 10(11), 4483–4487 (2010).
    [CrossRef] [PubMed]
  8. G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
    [CrossRef] [PubMed]
  9. T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
    [CrossRef]
  10. N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
    [CrossRef]
  11. F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Lett. 9(7), 2774–2779 (2009).
    [CrossRef] [PubMed]
  12. K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
    [CrossRef] [PubMed]
  13. R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B 74(15), 155421 (2006).
    [CrossRef]
  14. K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B 73(15), 155333 (2006).
    [CrossRef]
  15. H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
    [CrossRef]
  16. S. X. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
    [CrossRef] [PubMed]
  17. S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B Condens. Matter 38(18), 12966–12976 (1988).
    [CrossRef] [PubMed]
  18. L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [CrossRef] [PubMed]
  19. J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
    [CrossRef]
  20. The nonlinear dependence between the Raman intensity and excitation power particularly at higher powers is attributed to laser-induced partial melting of the nanowire.
  21. H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
    [CrossRef] [PubMed]

2011 (1)

S. X. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[CrossRef] [PubMed]

2010 (4)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett. 10(11), 4483–4487 (2010).
[CrossRef] [PubMed]

J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
[CrossRef]

2009 (2)

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Lett. 9(7), 2774–2779 (2009).
[CrossRef] [PubMed]

2008 (1)

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

2007 (2)

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

2006 (5)

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

L. Y. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett. 96(15), 157402 (2006).
[CrossRef] [PubMed]

R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B 74(15), 155421 (2006).
[CrossRef]

K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B 73(15), 155333 (2006).
[CrossRef]

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

2005 (1)

K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
[CrossRef] [PubMed]

2002 (2)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

1991 (1)

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

1988 (1)

S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B Condens. Matter 38(18), 12966–12976 (1988).
[CrossRef] [PubMed]

Adachi, S.

S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B Condens. Matter 38(18), 12966–12976 (1988).
[CrossRef] [PubMed]

Adu, K. W.

K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B 73(15), 155333 (2006).
[CrossRef]

K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
[CrossRef] [PubMed]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Bao, X. Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Brongersma, M. L.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Cantoro, M.

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

Cao, L. Y.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

L. Y. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett. 96(15), 157402 (2006).
[CrossRef] [PubMed]

Chandrasekharan, H.

R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B 74(15), 155421 (2006).
[CrossRef]

Chen, J.

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

Clemens, B. M.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Colli, A.

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

Eklund, P. C.

J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
[CrossRef]

K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B 73(15), 155333 (2006).
[CrossRef]

K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
[CrossRef] [PubMed]

Fang, Y.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Ferrari, A. C.

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

Fujii, M.

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

Fukata, N.

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Gutierrez, H. R.

J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
[CrossRef]

K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B 73(15), 155333 (2006).
[CrossRef]

Gutiérrez, H. R.

K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
[CrossRef] [PubMed]

Hayashi, S.

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

Hemesath, E. R.

F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Lett. 9(7), 2774–2779 (2009).
[CrossRef] [PubMed]

Herman, I. P.

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

Huang, J. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Hyun, J. K.

S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett. 10(11), 4483–4487 (2010).
[CrossRef] [PubMed]

Imamura, G.

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

Ito, S.

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

Jalilian, R.

R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B 74(15), 155421 (2006).
[CrossRef]

Kawashima, T.

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Kempa, T. J.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kim, H.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Kim, I. S.

S. X. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[CrossRef] [PubMed]

Kim, U. J.

K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B 73(15), 155333 (2006).
[CrossRef]

K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
[CrossRef] [PubMed]

Kind, H.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Komori, K.

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

Lauhon, L. J.

S. X. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[CrossRef] [PubMed]

S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett. 10(11), 4483–4487 (2010).
[CrossRef] [PubMed]

F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Lett. 9(7), 2774–2779 (2009).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Law, M.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Lieber, C. M.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lo, Y.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Lopez, F. J.

S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett. 10(11), 4483–4487 (2010).
[CrossRef] [PubMed]

F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Lett. 9(7), 2774–2779 (2009).
[CrossRef] [PubMed]

Lu, Q. J.

J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
[CrossRef]

Messer, B.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Murakami, K.

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

Nabet, B.

L. Y. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett. 96(15), 157402 (2006).
[CrossRef] [PubMed]

Nishimura, C.

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

Okada, N.

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

Park, J. S.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Reich, S.

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

Saitoh, T.

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

Scheel, H.

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

Schuller, J. A.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Sekiguchi, T.

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Soci, C.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Spanier, J. E.

L. Y. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett. 96(15), 157402 (2006).
[CrossRef] [PubMed]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Sumanasekera, G. U.

R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B 74(15), 155421 (2006).
[CrossRef]

K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
[CrossRef] [PubMed]

Sunkara, M. K.

R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B 74(15), 155421 (2006).
[CrossRef]

Tang, H.

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

Thomsen, C.

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

Tian, B. Z.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Tsurui, T.

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Wang, D. L.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

White, J. S.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Wu, J.

J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
[CrossRef]

Yan, H. Q.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yang, P. D.

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Yu, G. H.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N. F.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zhang, A.

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

Zhang, D. M.

J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
[CrossRef]

Zhang, S. X.

S. X. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[CrossRef] [PubMed]

S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett. 10(11), 4483–4487 (2010).
[CrossRef] [PubMed]

Zheng, X. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett. 89(20), 203109 (2006).
[CrossRef]

H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett. 88(23), 233114 (2006).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C 111(42), 15160–15165 (2007).
[CrossRef]

Nano Lett. (5)

S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett. 10(11), 4483–4487 (2010).
[CrossRef] [PubMed]

G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett. 8(9), 2620–2624 (2008).
[CrossRef] [PubMed]

S. X. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett. 11(4), 1443–1447 (2011).
[CrossRef] [PubMed]

F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Lett. 9(7), 2774–2779 (2009).
[CrossRef] [PubMed]

K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett. 5(3), 409–414 (2005).
[CrossRef] [PubMed]

Nat. Mater. (2)

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Nature (2)

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (3)

J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B 81(16), 165415 (2010).
[CrossRef]

R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B 74(15), 155421 (2006).
[CrossRef]

K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B 73(15), 155333 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B Condens. Matter 38(18), 12966–12976 (1988).
[CrossRef] [PubMed]

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter 43(3), 2299–2304 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. Y. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett. 96(15), 157402 (2006).
[CrossRef] [PubMed]

Other (1)

The nonlinear dependence between the Raman intensity and excitation power particularly at higher powers is attributed to laser-induced partial melting of the nanowire.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulated absorption cross-sections Qabs of a core-shell nanowire (a),(b) and a blanket coated nanowire (c),(d) as function of dielectric thickness and excitation wavelength for a 50 nm core-diameter Ge nanowire. (e),(f) Comparison of Qabs at λ = 532 nm between core-shell and coated nanowires as a function of thickness. TM is at left and TE at right throughout.

Fig. 2
Fig. 2

TM absorption enhancement in a core-shell nanowire relative to a bare nanowire as a function of effective shell thickness and effective core diameter, scaled by wavelength. Excitation wavelengths are 532 nm (a), 633 nm (b), and 785 nm (c), corresponding to common commercially available lasers.

Fig. 3
Fig. 3

(a) AFM image of a 50 nm-diameter Ge nanowire coated with 120 nm of SiO2 in the middle of the nanowire. (b) Spatial map of the 1st order Ge Raman mode, excited with TM polarized light. (c) Raman spectra sampled from a coated (solid red line) and bare region (dotted blue line). (d),(e) Spatial cross-section of TM-polarized |E|4 in a bare nanowire (d) and in a coated nanowire (e). (f) Simulated (solid line) and experimental (red circle) Raman enhancements relative to bare nanowire as a function of thickness.

Fig. 4
Fig. 4

Power dependence of Raman intensity and nanowire heating for a 50 nm Ge nanowire coated with 120 nm of SiO2. (a) Raman peak intensity for coated and bare nanowire observed as a function of excitation power. (b) Raman shift and corresponding temperatures in the nanowire observed as a function of Raman intensity.

Metrics