Abstract

Low-frequency Raman scattering from self-assembled bioinspired diphenylalanine (FF) nanotubes/microtubes (NTs/MTs) has been observed for the first time. Four double peaks are identified as the three-dimensional localized collective (acoustic phonon) vibrations of FF molecules in the subnanometer crystalline structure (biological building block) forming the FF NTs/MTs. The increased energy separations between two subpeaks caused by the loss of water in the nanochannel cores are due to the enhancement of vibrational couplings between the FF molecules as a result of the reduction of the influence from water on the coupling. The results provide experimental evidence of localized but still weakly coupled vibrations in organic crystalline nanostructures in the low-frequency region.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass-Observation by very-low-frequency Raman-scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
    [CrossRef]
  2. L. Saviot and D. B. Murray, “Long lived acoustic vibrational modes of an embedded nanoparticle,” Phys. Rev. Lett. 93(5), 055506 (2004).
    [CrossRef] [PubMed]
  3. A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
    [CrossRef] [PubMed]
  4. H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
    [CrossRef] [PubMed]
  5. X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
    [CrossRef]
  6. X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
    [CrossRef] [PubMed]
  7. M. Reches and E. Gazit, “Casting metal nanowires within discrete self-assembled peptide nanotubes,” Science 300(5619), 625–627 (2003).
    [CrossRef] [PubMed]
  8. M. Reches and E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes,” Nat. Nanotechnol. 1(3), 195–200 (2006).
    [CrossRef] [PubMed]
  9. M. Reches and E. Gazit, “Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides,” Nano Lett. 4(4), 581–585 (2004).
    [CrossRef]
  10. N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
    [CrossRef] [PubMed]
  11. L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
    [CrossRef] [PubMed]
  12. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
    [CrossRef] [PubMed]
  13. K. Biswas and C. N. R. Rao, “Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures,” ACS Appl. Mater. Interfaces 1(4), 811–815 (2009).
    [CrossRef] [PubMed]
  14. N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
    [CrossRef] [PubMed]
  15. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett. 94(26), 261907 (2009).
    [CrossRef]
  16. N. Amdursky, E. Gazit, and G. Rosenman, “Quantum confinement in self-assembled bioinspired peptide hydrogels,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2311–2315 (2010).
    [CrossRef] [PubMed]
  17. J. K. Ryu, S. Y. Lim, and C. B. Park, “Photoluminescent peptide nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1577–1581 (2009).
    [CrossRef]
  18. C. H. Görbitz, “The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s ?-amyloid polypeptide,” Chem. Commun. (Camb.) (22): 2332–2334 (2006).
    [CrossRef] [PubMed]
  19. C. H. Görbitz, “Nanotube formation by hydrophobic dipeptides,” Chemistry 7(23), 5153–5159 (2001).
    [CrossRef] [PubMed]
  20. J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
    [CrossRef] [PubMed]
  21. M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small 7(19), 2801–2807 (2011).
    [CrossRef] [PubMed]
  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, Jr., J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, Ö. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komáromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 03, Revision A.1 (Gaussian, Inc., Pittsburgh, PA, 2003).
  23. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [CrossRef] [PubMed]
  24. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem. 96(1), 135–149 (1992).
    [CrossRef]
  25. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem. 17(1), 49–56 (1996).
    [CrossRef]
  26. R. Krishnan, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys. 72(8), 4654–4655 (1980).
    [CrossRef]
  27. A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys. 71(5), 2150–2155 (1979).
    [CrossRef]
  28. X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
    [CrossRef] [PubMed]

2011

M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small 7(19), 2801–2807 (2011).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

2010

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
[CrossRef] [PubMed]

N. Amdursky, E. Gazit, and G. Rosenman, “Quantum confinement in self-assembled bioinspired peptide hydrogels,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2311–2315 (2010).
[CrossRef] [PubMed]

2009

J. K. Ryu, S. Y. Lim, and C. B. Park, “Photoluminescent peptide nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1577–1581 (2009).
[CrossRef]

K. Biswas and C. N. R. Rao, “Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures,” ACS Appl. Mater. Interfaces 1(4), 811–815 (2009).
[CrossRef] [PubMed]

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett. 94(26), 261907 (2009).
[CrossRef]

X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
[CrossRef] [PubMed]

2008

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

2006

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

M. Reches and E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes,” Nat. Nanotechnol. 1(3), 195–200 (2006).
[CrossRef] [PubMed]

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

C. H. Görbitz, “The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s ?-amyloid polypeptide,” Chem. Commun. (Camb.) (22): 2332–2334 (2006).
[CrossRef] [PubMed]

2005

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
[CrossRef] [PubMed]

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

2004

L. Saviot and D. B. Murray, “Long lived acoustic vibrational modes of an embedded nanoparticle,” Phys. Rev. Lett. 93(5), 055506 (2004).
[CrossRef] [PubMed]

M. Reches and E. Gazit, “Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides,” Nano Lett. 4(4), 581–585 (2004).
[CrossRef]

2003

M. Reches and E. Gazit, “Casting metal nanowires within discrete self-assembled peptide nanotubes,” Science 300(5619), 625–627 (2003).
[CrossRef] [PubMed]

2001

C. H. Görbitz, “Nanotube formation by hydrophobic dipeptides,” Chemistry 7(23), 5153–5159 (2001).
[CrossRef] [PubMed]

1996

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem. 17(1), 49–56 (1996).
[CrossRef]

1992

J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem. 96(1), 135–149 (1992).
[CrossRef]

1986

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass-Observation by very-low-frequency Raman-scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef]

1980

R. Krishnan, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys. 72(8), 4654–4655 (1980).
[CrossRef]

1979

A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys. 71(5), 2150–2155 (1979).
[CrossRef]

Adler-Abramovich, L.

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

Albouy, P. A.

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
[CrossRef] [PubMed]

Allen, S.

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

Amdursky, N.

N. Amdursky, E. Gazit, and G. Rosenman, “Quantum confinement in self-assembled bioinspired peptide hydrogels,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2311–2315 (2010).
[CrossRef] [PubMed]

A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
[CrossRef] [PubMed]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett. 94(26), 261907 (2009).
[CrossRef]

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

Aronov, D.

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

Ayala, P. Y.

C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem. 17(1), 49–56 (1996).
[CrossRef]

Barlam, D.

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

Bdikin, I.

A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
[CrossRef] [PubMed]

Biswas, K.

K. Biswas and C. N. R. Rao, “Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures,” ACS Appl. Mater. Interfaces 1(4), 811–815 (2009).
[CrossRef] [PubMed]

Boukenter, A.

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass-Observation by very-low-frequency Raman-scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Champagnon, B.

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass-Observation by very-low-frequency Raman-scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef]

Chen, H. T.

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Chen, J.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

Choi, J.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Chu, P. K.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small 7(19), 2801–2807 (2011).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Churchill, D. G.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Courty, A.

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
[CrossRef] [PubMed]

Duval, E.

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
[CrossRef] [PubMed]

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass-Observation by very-low-frequency Raman-scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Foresman, J. B.

J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem. 96(1), 135–149 (1992).
[CrossRef]

Frisch, M. J.

C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem. 17(1), 49–56 (1996).
[CrossRef]

J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem. 96(1), 135–149 (1992).
[CrossRef]

Gazit, E.

A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
[CrossRef] [PubMed]

N. Amdursky, E. Gazit, and G. Rosenman, “Quantum confinement in self-assembled bioinspired peptide hydrogels,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2311–2315 (2010).
[CrossRef] [PubMed]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett. 94(26), 261907 (2009).
[CrossRef]

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

M. Reches and E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes,” Nat. Nanotechnol. 1(3), 195–200 (2006).
[CrossRef] [PubMed]

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

M. Reches and E. Gazit, “Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides,” Nano Lett. 4(4), 581–585 (2004).
[CrossRef]

M. Reches and E. Gazit, “Casting metal nanowires within discrete self-assembled peptide nanotubes,” Science 300(5619), 625–627 (2003).
[CrossRef] [PubMed]

Gong, J. F.

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Görbitz, C. H.

C. H. Görbitz, “The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s ?-amyloid polypeptide,” Chem. Commun. (Camb.) (22): 2332–2334 (2006).
[CrossRef] [PubMed]

C. H. Görbitz, “Nanotube formation by hydrophobic dipeptides,” Chemistry 7(23), 5153–5159 (2001).
[CrossRef] [PubMed]

Gupta, V.

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

Han, T. H.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Head-Gordon, M.

J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem. 96(1), 135–149 (1992).
[CrossRef]

Ihee, H.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Jaffe, R. L.

A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys. 71(5), 2150–2155 (1979).
[CrossRef]

Katiyar, R. S.

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

Kholkin, A.

A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
[CrossRef] [PubMed]

Kim, J. B.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Kim, S. O.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Kim, Y. I.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Kol, N.

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

Komornicki, A.

A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys. 71(5), 2150–2155 (1979).
[CrossRef]

Krishnan, R.

R. Krishnan, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys. 72(8), 4654–4655 (1980).
[CrossRef]

Li, T. H.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

Lim, S. Y.

J. K. Ryu, S. Y. Lim, and C. B. Park, “Photoluminescent peptide nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1577–1581 (2009).
[CrossRef]

Liu, Z.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

Mermet, A.

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
[CrossRef] [PubMed]

Molotskii, M.

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett. 94(26), 261907 (2009).
[CrossRef]

Murray, D. B.

L. Saviot and D. B. Murray, “Long lived acoustic vibrational modes of an embedded nanoparticle,” Phys. Rev. Lett. 93(5), 055506 (2004).
[CrossRef] [PubMed]

Park, C. B.

J. K. Ryu, S. Y. Lim, and C. B. Park, “Photoluminescent peptide nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1577–1581 (2009).
[CrossRef]

Park, J. S.

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Peng, C.

C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem. 17(1), 49–56 (1996).
[CrossRef]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Pileni, M. P.

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
[CrossRef] [PubMed]

Pople, J. A.

J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem. 96(1), 135–149 (1992).
[CrossRef]

R. Krishnan, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys. 72(8), 4654–4655 (1980).
[CrossRef]

Rao, C. N. R.

K. Biswas and C. N. R. Rao, “Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures,” ACS Appl. Mater. Interfaces 1(4), 811–815 (2009).
[CrossRef] [PubMed]

Reches, M.

M. Reches and E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes,” Nat. Nanotechnol. 1(3), 195–200 (2006).
[CrossRef] [PubMed]

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

M. Reches and E. Gazit, “Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides,” Nano Lett. 4(4), 581–585 (2004).
[CrossRef]

M. Reches and E. Gazit, “Casting metal nanowires within discrete self-assembled peptide nanotubes,” Science 300(5619), 625–627 (2003).
[CrossRef] [PubMed]

Rosenman, G.

N. Amdursky, E. Gazit, and G. Rosenman, “Quantum confinement in self-assembled bioinspired peptide hydrogels,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2311–2315 (2010).
[CrossRef] [PubMed]

A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
[CrossRef] [PubMed]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett. 94(26), 261907 (2009).
[CrossRef]

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

Rousso, I.

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

Ryu, J. K.

J. K. Ryu, S. Y. Lim, and C. B. Park, “Photoluminescent peptide nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1577–1581 (2009).
[CrossRef]

Saviot, L.

L. Saviot and D. B. Murray, “Long lived acoustic vibrational modes of an embedded nanoparticle,” Phys. Rev. Lett. 93(5), 055506 (2004).
[CrossRef] [PubMed]

Schlegel, H. B.

C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem. 17(1), 49–56 (1996).
[CrossRef]

R. Krishnan, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys. 72(8), 4654–4655 (1980).
[CrossRef]

Sedman, V. L.

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

Shen, J. C.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Shneck, R. Z.

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

Singh, S. P.

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

Sreenivas, K.

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

Sun, L. T.

X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
[CrossRef] [PubMed]

Sundarakannan, B.

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

Tendler, S. J. B.

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

Wang, M. J.

M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small 7(19), 2801–2807 (2011).
[CrossRef] [PubMed]

Wu, P. H.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

Wu, X. L.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small 7(19), 2801–2807 (2011).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Xiong, S. J.

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small 7(19), 2801–2807 (2011).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Yadav, H. K.

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

Yang, Y. M.

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Zhu, J.

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

ACS Appl. Mater. Interfaces

K. Biswas and C. N. R. Rao, “Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures,” ACS Appl. Mater. Interfaces 1(4), 811–815 (2009).
[CrossRef] [PubMed]

ACS Nano

A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

N. Amdursky, E. Gazit, and G. Rosenman, “Quantum confinement in self-assembled bioinspired peptide hydrogels,” Adv. Mater. (Deerfield Beach Fla.) 22(21), 2311–2315 (2010).
[CrossRef] [PubMed]

J. K. Ryu, S. Y. Lim, and C. B. Park, “Photoluminescent peptide nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 21(16), 1577–1581 (2009).
[CrossRef]

J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 22(5), 583–587 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett. 94(26), 261907 (2009).
[CrossRef]

Chem. Commun. (Camb.)

C. H. Görbitz, “The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s ?-amyloid polypeptide,” Chem. Commun. (Camb.) (22): 2332–2334 (2006).
[CrossRef] [PubMed]

Chemistry

C. H. Görbitz, “Nanotube formation by hydrophobic dipeptides,” Chemistry 7(23), 5153–5159 (2001).
[CrossRef] [PubMed]

J. Chem. Phys.

R. Krishnan, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys. 72(8), 4654–4655 (1980).
[CrossRef]

A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys. 71(5), 2150–2155 (1979).
[CrossRef]

J. Comput. Chem.

C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem. 17(1), 49–56 (1996).
[CrossRef]

J. Phys. Chem.

J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem. 96(1), 135–149 (1992).
[CrossRef]

Langmuir

L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir 22(3), 1313–1320 (2006).
[CrossRef] [PubMed]

Nano Lett.

M. Reches and E. Gazit, “Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides,” Nano Lett. 4(4), 581–585 (2004).
[CrossRef]

N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett. 5(7), 1343–1346 (2005).
[CrossRef] [PubMed]

N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett. 9(9), 3111–3115 (2009).
[CrossRef] [PubMed]

Nat. Mater.

A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater. 4(5), 395–398 (2005).
[CrossRef] [PubMed]

Nat. Nanotechnol.

M. Reches and E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes,” Nat. Nanotechnol. 1(3), 195–200 (2006).
[CrossRef] [PubMed]

X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol. 6(2), 103–106 (2011).
[CrossRef] [PubMed]

Phys. Rev. B

X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B 78(16), 165319 (2008).
[CrossRef]

Phys. Rev. Lett.

H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett. 97(8), 085502 (2006).
[CrossRef] [PubMed]

E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass-Observation by very-low-frequency Raman-scattering,” Phys. Rev. Lett. 56(19), 2052–2055 (1986).
[CrossRef]

L. Saviot and D. B. Murray, “Long lived acoustic vibrational modes of an embedded nanoparticle,” Phys. Rev. Lett. 93(5), 055506 (2004).
[CrossRef] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Science

M. Reches and E. Gazit, “Casting metal nanowires within discrete self-assembled peptide nanotubes,” Science 300(5619), 625–627 (2003).
[CrossRef] [PubMed]

Small

X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small 5(24), 2823–2826 (2009) (and references therein).
[CrossRef] [PubMed]

M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small 7(19), 2801–2807 (2011).
[CrossRef] [PubMed]

Other

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, Jr., J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, Ö. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komáromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 03, Revision A.1 (Gaussian, Inc., Pittsburgh, PA, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Locally magnified scheme of FF NT/MT wall consisting of a large number of nanochannel cores. Red circle shows a SCS unit cell in which the weakly combined water molecules (red points) are localized at the center of the channel core. (b) A typical SEM image of the FF NTs/MTs fabricated using a FF concentration of 90 mg/mL at the RH value of 1 and 22 °C.

Fig. 2
Fig. 2

(a) LF Raman spectra of the FF NT/MT samples fabricated with the FF concentrations ranging from 30 to 200 mg/mL at the RH value of 1. (b) LF Raman spectra of the FF NT/MT samples fabricated with the FF concentration of 160 mg/mL at the RH values varying from 0.33 to 1.0.

Fig. 3
Fig. 3

LF Raman spectra of the FF NT/MT samples with different light illumination times. The initial NT/MT sample was fabricated with the FF concentration of 180 mg/mL at the RH value of 1 and 22 °C.

Fig. 4
Fig. 4

Displacement vectors of atoms (blue arrows) of the 8 most Raman active modes in the LF range of FF molecule obtained from the DFT calculation. ωi and Ai with i = 1,2,…,8 are corresponding frequencies and Raman activities, respectively.

Fig. 5
Fig. 5

Calculated Raman intensity in the LF range of a SCS. ωi and Ai with i = 1,2,…,8 are obtained from the DFT calculation for FF molecule. Other parameters are selected in a SCS as: η1 = η2 = 10 cm−1, η7 = η8 = 30 cm−1. For black curve 1: η3 = η4 = 30 cm−1, η5 = η6 = 40 cm−1. For red curve 2: η3 = η4 = 35 cm−1, η5 = η6 = 45 cm−1. For blue curve 3: η3 = η4 = 40 cm−1, η5 = η6 = 50 cm−1.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K i = n M i ω i 2 X in 2 2 ,
V i = 1 2 <n, n ' > λ i ( X in X i n ' ) 2 ,
ω i ( k 1 , k 2 )= ω i 2 + η i 2 (2cos k 1 cos k 2 ) ,
I(ω)= i=1 8 m=0 5 A i 0 2π δ[ ω ω i ( k 1 , k 2m ) ]d k 1 ,

Metrics