Abstract

We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30cm length are pumped with up to 15W of CW power at 1068nm. The threshold power is ~2W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01nm at ~1117nm and ~1109nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
    [CrossRef] [PubMed]
  2. A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
    [CrossRef]
  3. M. Ibsen, E. Rønnekleiv, G. J. Cowle, M. O. Berendt, O. Hadeler, M. N. Zervas, and R. I. Laming, “Robust high power (>20 mW) all-fibre DFB lasers with unidirectional and truly single polarisation outputs,” in Proceedings of CLEO '99, paper CWE4 (1999).
  4. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low-threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
    [CrossRef]
  5. P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW fibre Raman laser source 1.6-1.9 ?m,” Electron. Lett. 32(16), 1486–1487 (1996).
    [CrossRef]
  6. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [CrossRef] [PubMed]
  7. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [CrossRef]
  8. R. Engelbrecht, A. Siekiera, R. Bauer, R. Neumann, and B. Schmauss, “Characterization of Short PM Raman Fiber Lasers with a Small Spectral Bandwidth,” in Proceedings to OFC/NFOEC’11, paper OMQ2 (2011).
  9. V. E. Perlin and H. G. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
    [CrossRef]
  10. H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [CrossRef]
  11. Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
    [CrossRef]
  12. J. Shi and M. Ibsen, “Effects of Phase and Amplitude Noise on ? Phase-Shifted DFB Raman Fibre Lasers,” in Proceedings of BGPP’10, paper JThA30 (2010).
  13. P. S. Westbrook, K. S. Abedin, J. W. Nicholson, T. Kremp, and J. Porque, “Demonstration of a Raman fiber distributed feedback laser,” in Proceedings of CLEO’11, PDPA11 (2011).
  14. P. S. Westbrook, K. S. Abedin, J. W. Nicholson, T. Kremp, and J. Porque, “Raman fiber distributed feedback lasers,” Opt. Lett. 36(15), 2895–2897 (2011).
    [CrossRef] [PubMed]
  15. J. Shi, S.-u. Alam, and M. Ibsen, “High power, low threshold, Raman DFB fiber lasers,” in Proceedings of IQEC/CLEO Pacific Rim Sydney, postdeadline paper (2011).
  16. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
    [CrossRef]
  17. C. Fukai, K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, and I. Sankawa, “Effective Raman gain characteristics in germanium- and fluorine-doped optical fibers,” Opt. Lett. 29(6), 545–547 (2004).
    [CrossRef] [PubMed]
  18. R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
    [CrossRef]
  19. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt. Lett. 28(13), 1126–1128 (2003).
    [CrossRef] [PubMed]
  20. J. Shi, X. Feng, P. Horak, K. K. Chen, P. S. Teh, S.-U. Alam, W. H. Loh, D. J. R. Richardson, and M. Ibsen, “1.06 µm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol. 29(22), 3461–3469 (2011).
    [CrossRef]
  21. R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
    [CrossRef] [PubMed]
  22. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, “Ultra-wide-band Tellurite-based fiber Raman amplifier,” J. Lightwave Technol. 21(5), 1300–1306 (2003).
    [CrossRef]

2011 (2)

2010 (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

2009 (3)

2004 (1)

2003 (2)

2001 (1)

V. E. Perlin and H. G. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
[CrossRef]

1998 (1)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

1996 (1)

P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW fibre Raman laser source 1.6-1.9 ?m,” Electron. Lett. 32(16), 1486–1487 (1996).
[CrossRef]

1995 (1)

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

1994 (1)

1979 (1)

R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[CrossRef]

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low-threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Abedin, K. S.

Alam, S.-U.

Ania-Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Archambault, J.-L.

Asseh, A.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Barton, J. S.

Bennion, I.

Bookey, H. T.

Broderick, N. G. R.

Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
[CrossRef]

Calia, D. B.

Cardinal, T.

Chen, K. K.

Chernikov, S. V.

P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW fibre Raman laser source 1.6-1.9 ?m,” Electron. Lett. 32(16), 1486–1487 (1996).
[CrossRef]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

Delfyett, P.

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

Edwall, G.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Feng, X.

Feng, Y.

Fukai, C.

Guo, Y.

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Hill, K. O.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low-threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[CrossRef]

Horak, P.

Hu, Y.

Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
[CrossRef]

Ibsen, M.

Jankovic, L.

Jha, A.

Jiang, X.

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low-threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Kar, A. K.

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low-threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[CrossRef]

Kim, H.

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Kremp, T.

Kringlebotn, J. T.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19(24), 2101–2103 (1994).
[CrossRef] [PubMed]

Kurokawa, K.

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

Li, H.

Loh, W. H.

Lousteau, J.

MacPherson, W. N.

Margulis, W.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

Masuda, H.

Mori, A.

Nakajima, K.

Nicholson, J. W.

Payne, D. N.

Perlin, V. E.

V. E. Perlin and H. G. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
[CrossRef]

Persephonis, P.

P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW fibre Raman laser source 1.6-1.9 ?m,” Electron. Lett. 32(16), 1486–1487 (1996).
[CrossRef]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Porque, J.

Reekie, L.

Richardson, D. J. R.

Richardson, K.

Rivero, C.

Sahlgren, B.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

Sandgren, S.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

Sankawa, I.

Schulte, A.

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

Shi, J.

Shikano, K.

Shimizu, M.

Stegeman, G.

Stegeman, R.

Stolen, R.

R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[CrossRef]

Storøy, H.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

Stubbe, R.

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

Suo, R.

Tajima, K.

Taylor, J. R.

P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW fibre Raman laser source 1.6-1.9 ?m,” Electron. Lett. 32(16), 1486–1487 (1996).
[CrossRef]

Taylor, L. R.

Teh, P. S.

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Westbrook, P. S.

Winful, H. G.

V. E. Perlin and H. G. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
[CrossRef]

Zhang, L.

Zhou, J.

Zhou, K.

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Low-threshold cw Raman laser,” Appl. Phys. Lett. 29(3), 181–183 (1976).
[CrossRef]

Electron. Lett. (2)

P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW fibre Raman laser source 1.6-1.9 ?m,” Electron. Lett. 32(16), 1486–1487 (1996).
[CrossRef]

A. Asseh, H. Storøy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31(12), 969–970 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

V. E. Perlin and H. G. Winful, “Distributed feedback fiber Raman laser,” IEEE J. Quantum Electron. 37(1), 38–47 (2001).
[CrossRef]

R. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15(10), 1157–1160 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fibre Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Opt. Commun. (1)

Y. Hu and N. G. R. Broderick, “Improved design of a DFB Raman fibre laser,” Opt. Commun. 282(16), 3356–3359 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (5)

J. Shi, S.-u. Alam, and M. Ibsen, “High power, low threshold, Raman DFB fiber lasers,” in Proceedings of IQEC/CLEO Pacific Rim Sydney, postdeadline paper (2011).

J. Shi and M. Ibsen, “Effects of Phase and Amplitude Noise on ? Phase-Shifted DFB Raman Fibre Lasers,” in Proceedings of BGPP’10, paper JThA30 (2010).

P. S. Westbrook, K. S. Abedin, J. W. Nicholson, T. Kremp, and J. Porque, “Demonstration of a Raman fiber distributed feedback laser,” in Proceedings of CLEO’11, PDPA11 (2011).

R. Engelbrecht, A. Siekiera, R. Bauer, R. Neumann, and B. Schmauss, “Characterization of Short PM Raman Fiber Lasers with a Small Spectral Bandwidth,” in Proceedings to OFC/NFOEC’11, paper OMQ2 (2011).

M. Ibsen, E. Rønnekleiv, G. J. Cowle, M. O. Berendt, O. Hadeler, M. N. Zervas, and R. I. Laming, “Robust high power (>20 mW) all-fibre DFB lasers with unidirectional and truly single polarisation outputs,” in Proceedings of CLEO '99, paper CWE4 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup. Passive cold cavity transmission spectra of the DFB gratings in PS980 (b) and UHNA4 (c), measured with a RBW of 0.01nm.

Fig. 2
Fig. 2

DFB output spectra just below and just above threshold of R-DFB1 with 0.1nm RBW (a) and 0.01nm RBW (b), and R-DFB2 with 0.1nm RBW (c) and 0.01nm RBW (d). The powers shown in the figure are the incident pump power.

Fig. 3
Fig. 3

Total R-DFB output power against incident pump power (a) and absorbed pump power (b).

Fig. 4
Fig. 4

DFB output spectra at maximum output power of R-DFB1 with 0.1nm RBW (a) and 0.01nm RBW (b), and R-DFB2 with 0.1nm RBW (c) and 0.01nm RBW (d).

Fig. 5
Fig. 5

Simulated incident threshold power against length of centre π phase-shifted Raman DFB fibre lasers for three different fibres. Vertical line indicates the DFB grating length of 30cm.

Tables (1)

Tables Icon

Table 1 Key Parameters of the Fibres and Bragg gratings Used for the Raman DFB Fibre Lasers

Metrics