Abstract

In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
    [CrossRef]
  2. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
    [CrossRef]
  3. H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000).
    [CrossRef] [PubMed]
  4. M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
    [CrossRef]
  5. O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. (Deerfield Beach Fla.) 14, 1000–1004 (2002).
  6. Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003).
    [CrossRef]
  7. J. Pérez-Juste, B. Rodr?guez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
    [CrossRef]
  8. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
    [CrossRef] [PubMed]
  9. G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
    [CrossRef]
  10. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
    [CrossRef]
  11. A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
    [CrossRef]
  12. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
    [CrossRef] [PubMed]
  13. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
    [CrossRef]
  14. P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
    [CrossRef] [PubMed]
  15. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  16. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009).
    [CrossRef] [PubMed]
  17. W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
    [CrossRef]
  18. D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
    [CrossRef] [PubMed]
  19. I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45(8), 1794–1803 (2006).
    [CrossRef] [PubMed]
  20. A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
    [CrossRef]
  21. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
    [CrossRef]
  22. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
    [CrossRef]
  23. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [CrossRef] [PubMed]
  24. R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342(5), 881–900 (1912).
    [CrossRef]
  25. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
    [CrossRef] [PubMed]
  26. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
    [CrossRef]
  27. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seedmediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [CrossRef]
  28. K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008).
    [CrossRef]
  29. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
    [CrossRef] [PubMed]
  30. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  31. K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
    [CrossRef] [PubMed]
  32. K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
    [CrossRef] [PubMed]
  33. S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
    [CrossRef]

2011

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

2010

D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
[CrossRef] [PubMed]

2009

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009).
[CrossRef] [PubMed]

2008

K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008).
[CrossRef]

2007

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

2006

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[CrossRef]

I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45(8), 1794–1803 (2006).
[CrossRef] [PubMed]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

2005

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
[CrossRef] [PubMed]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

J. Pérez-Juste, B. Rodr?guez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

2003

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seedmediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

2002

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. (Deerfield Beach Fla.) 14, 1000–1004 (2002).

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[CrossRef]

2001

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

2000

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000).
[CrossRef] [PubMed]

1999

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

1998

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

1912

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342(5), 881–900 (1912).
[CrossRef]

Aaron, J.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Abdolvand, A.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

Aussenegg, F. R.

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Bullen, C.

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Cao, H.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Chang, S. S.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Chau, K. J.

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

Chen, C. D.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Chen, C. J.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Chen, H. L.

D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
[CrossRef] [PubMed]

Chen, W. T.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Chen, Y. P.

D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
[CrossRef] [PubMed]

Choi, K.

K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008).
[CrossRef]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

Daiber, A. J.

Dice, G. D.

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Eichler, H. J.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Elezzabi, A. Y.

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seedmediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Eustis, S.

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[CrossRef]

Gans, R.

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342(5), 881–900 (1912).
[CrossRef]

Genov, D. A.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Gomez, D.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Graener, H.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[CrossRef] [PubMed]

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

Harrison, N.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Hartland, G. V.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[CrossRef]

Hesselink, L.

Higuchi, T.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

Hirose, T.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

Hu, M.

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[CrossRef]

Ichimura, I.

Iida, T.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

Im, H.

Inasawa, S.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

Jones, R. J.

Kawahara, M.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003).
[CrossRef]

Kobyakov, A.

Koda, S.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Kuan, C.-H.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Kuemmel, P.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Lai, W. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Lamprecht, B.

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lee, H.-C.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Leitner, A.

Lesuffleur, A.

Lindquist, N. C.

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Liz-Marzan, L. M.

J. Pérez-Juste, B. Rodr?guez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

Liz-Marzán, L. M.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Mansuripur, M.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009).
[CrossRef] [PubMed]

McDonald, M. E.

McLeod, R. R.

Mitsumori, A.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

Moloney, J. V.

Mulvaney, P.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

J. Pérez-Juste, B. Rodr?guez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. (Deerfield Beach Fla.) 14, 1000–1004 (2002).

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[CrossRef]

Niidome, Y.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seedmediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Noh, H.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Novo, C.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Ogasawara, M.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

Oh, S. H.

Omatsu, T.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

Orlic, S.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Osato, K.

Pastoriza-Santos, I.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Perez Juste, J.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

Perez-Juste, J.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Pérez-Juste, J.

J. Pérez-Juste, B. Rodr?guez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

Petrova, H.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Podlipensky, A.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

Prescott, S. W.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

Reismann, M.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Robertson, T. L.

Rodriguez-Gonzalez, B.

J. Pérez-Juste, B. Rodr?guez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

Sader, J. E.

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[CrossRef]

Saito, K.

Sarychev, A. K.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Seal, K.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Seifert, G.

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

Shalaev, V. M.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Shih, C. W.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Skrzypczak, U.

Slagle, T.

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sochava, S. L.

Sokolov, K.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Stalmashonak, A.

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[CrossRef] [PubMed]

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

Sugiyama, M.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

Takami, A.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

Tanaka, S.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

Travis, K.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Tsai, D. P.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Tseng, S. C.

D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
[CrossRef] [PubMed]

Ulm, S.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

Unal, A. A.

Urakawa, S.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003).
[CrossRef]

Wan, D.

D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
[CrossRef] [PubMed]

Wang, C. R. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Wang, L. A.

D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
[CrossRef] [PubMed]

Wappelt, A.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

Weng, C.-J.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Wilson, G. J.

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. (Deerfield Beach Fla.) 14, 1000–1004 (2002).

Wilson, O.

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. (Deerfield Beach Fla.) 14, 1000–1004 (2002).

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[CrossRef]

Wu, P. C.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Yamada, S.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003).
[CrossRef]

Yamasaki, T.

Yanagisawa, T.

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

Yen, T.-J.

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Ying, Z. C.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Yonekawa, T.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

Zakharian, A. R.

Zhang, X.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

Zhang, Z.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

ACS Nano

D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater.

K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008).
[CrossRef]

J. Pérez-Juste, B. Rodr?guez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. (Deerfield Beach Fla.) 14, 1000–1004 (2002).

Annalen der Physik

R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342(5), 881–900 (1912).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001).
[CrossRef]

W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seedmediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998).
[CrossRef]

J. Appl. Phys.

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006).
[CrossRef]

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001).
[CrossRef]

A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009).
[CrossRef]

J. Phys. Chem. B

G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003).
[CrossRef]

A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009).
[CrossRef]

Langmuir

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999).
[CrossRef]

Nano Lett.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Nature

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[CrossRef] [PubMed]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[CrossRef] [PubMed]

K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A) A schematic for a typical multilayered optical recording medium. (B) Log plot of reflected signal ratio with respect to layer number with layer reflectance r and extinction e identical throughout 20 layers. The cases r = 0.05, 0.10, 0.15 are shown. Exponential decay of the reflected signal power is evident, and best extinction values for readout exist for particular layers. (C) An extinction cross section plot for a single gold nanorod with aspect ratio 3.14, showing sharp SPR peak, which can be useful in varying the extinction if used in multilayered recording medium.

Fig. 2
Fig. 2

(A) Hypothetical 16 layer sample with a single size, aligned AuNRs. (B) Log plot of scattering signal ratio ξ (λ, n) with respect to wavelength and layer number, for a single size, aligned AuNRs with concentration ~40 n(M), aspect ratio 3.135 and fixed volume. Note the peak evolution at deeper layers, indicating the best readout can be achieved at detuned, off-SPR resonant wavelengths. (C) extinction spectrum for the single size sample used in the simulation. (D) Readout power comparison between SPR on-resonant (833nm) readout and off-resonant detuned readout, assuming 1 μW for first layer power and neglecting collection efficiency. The power reduction reaches ~1/60 for detuned readout. (E) 16 layer sample with distributed, randomly oriented AuNRs. (F) Log plot of scattering signal ratio ξ (λ, n) with AuNR concentration ~40 n(M), mean aspect ratio 3.135, and std. dev. 0.48. The required detuning is more for a distributed sample than a non-distributed sample. (G) extinction spectrum for the distributed AuNR sample. (H) Readout power comparison between SPR on-resonant (833 nm) readout and off-resonant detuned readout. For distributed rods, the power reduction is only 1/2.4.

Fig. 3
Fig. 3

(A) Spectra of recorded and unrecorded region, showing the difference between the two (Δscattering). Constituent NR spectra show that the resonant NR spectra are reduced (but not completely, due to contribution from misaligned NRs). Note the maximum Δscattering is at the recording wavelength. (B) Δscattering spectrum in multilayer setting, with recording wavelength fixed at SPR. There is no peak detuning at all layers and consequently off-resonant readout provides no real benefits for readout at deeper layers. (C) Δscattering spectrum in multilayer setting (c ~80 nM), now with recording wavelength also detuned and readout wavelengths being identical to recording wavelength. The graphs show clearly that, at detuned peaks, Δscattering is much more enhanced compared to that at SPR peak wavelength in deeper layers. (D) Enhancement in Δscattering and the amount of detuning required for the Δscattering spectrum, with respect to AuNR concentration. Higher concentration generally makes the higher enhancement in Δscattering, but also increases the amount of detuning. (E) Contrast, i.e., the ratio of Δscattering (Fig. 3(C)) to the total scattering strength (Fig. 2(F)) reveals that as the detuning increases, the contrast decreases – an expected result, because NR number decreases as the detuning from SPR increase. The contrast spectrum is identical throughout the layers.

Fig. 4
Fig. 4

(A) Aspect ratio histogram and TEM micrograph image of the AuNR samples that are used in the current study. Mean aspect ratio is 3.14 ± 0.48; mean length 42 nm ± 12 nm and width 14.4 ± 5 nm. A concentration function c(R) calculated using Eq. (3) is overlayed in the histogram, showing a good agreement with the histogram. (B) From the TEM image, average volume of NR was obtained for a given aspect ratio R interval, i.e., V(R), and is plotted. The best fit line, V(R) = 30650*R-1.29, is also shown together (red curve). (C) Normalized experimental scattering (blue) and extinction (black) spectrum obtained from the 16 layer sample. The scattering spectrum was obtained from a single layer, and extinction spectrum was obtained from 16 layer. A slight peak blue-shift in scattering compared to extinction spectrum is due to the increased volume at shorter aspect ratio, i.e., V(R). This is also reflected in the calculated scattering spectra (red) from multilayered sample using c(R) and V(R) functions obtained earlier. (D) A slight skew towards blue in the first few layers indicate strong scattering from shorter rods, but in deeper layers, heavy extinction at extinction peak (~833 nm) causes strong signal ratio decrease at that wavelength. The peak evolution shows large detuning, which causes loss in Contrast (λ) – see text. Optimal readout wavelengths were chosen to balance the Contrast (λ) in conjunction with Fig. 3(E).

Fig. 5
Fig. 5

(A) CW readout images (50 x 50 μm2) on 16 layer sample, with readout power and contrast optimised experimentally. (B) CW laser power used for constant readout signal level. The readout was performed with PMT with variable bias voltage, therefore the actual readout power used are much smaller than shown in the figure. The readout of the pattern was conducted using two wavelength, one at detuned (varied between 833 ~765 nm) and one at extinction peak (833 nm). (C) The patterns recorded were all confirmed to be due to photothermal melting of AuNRs, by checking the scattering images with readout beam polarization orthogonal to that of the recording beam. Cases for layer 1 and 16 are shown in the figure, which show little traces of the original recordings.

Fig. 6
Fig. 6

The effect of varying V(R) on determining c(R) and scattering spectrum. (A) Legends for different V(R) functional form on different conditions, ie., constant length, constant volume and constant width. (B) Fits to experimental extinction profile of AuNRs, demonstrating that all three conditions can easily fit to experimental results. (C) Resulting scattering profiles plotted using parameters obtained by fitting experimental extinction profile in (B). It clearly shows the large differences in the scattering profile for each V(R) condition, even though their extinction profiles are identical. (D) Resulting concentration function c(R) profiles plotted using the parameters obtained by fitting experimental extinction profile in (B). Again, it shows large differences in concentration profiles, even though their extinction profiles are identical.

Fig. 7
Fig. 7

(A) In the case of polarization detuned readout scheme on perfectly aligned and single sized AuNR array, the laser polarization direction relative to the longitudinal direction of AuNRs (θ) becomes the detuning parameter. (B) Log plot of scattering signal ratio ξ with respect to readout polarization direction and layer number.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ξ(λ,n)= P s P i =cl σ s (λ) [ exp(2.3cl σ e (λ)) ] 2(n1) .
ξ (λ,n)= P s P i = l 2 R=1 R max c(R) σ s (λ,R)dR [ exp( 2.3l 2 R=1 R max c(R) σ e (λ,R)dR ) ] 2(n1)
Ext(λ)= l 2 R=1 R max c(R) σ e (λ,R)dR
Δscattering(λ,n)= ξ unrecorded (λ,n) ξ recorded (λ,n).
Contrast(λ,n)= Δscattering(λ,n) scattering(λ,n) =1 ξ recorded (λ,n) ξ unrecorded (λ,n) .
ξ SPR (θ,n)= P s P i = cl σ s SPR (θ) [ exp(2.3cl σ e SPR (θ)) ] 2(n1)

Metrics