Abstract

In this paper, silicon solar cells with Ag nanoparticles deposited on a SiO2 spacer were studied concentrating on the influence of the surface plasmon and the antireflection film. We experimentally found that the photocurrent conversion efficiency of the solar cell decorated by random arrays of self-assembled Ag nanoparticles increases firstly and decreases afterwards with increasing spacer thickness. Further investigations on the external quantum efficiency (EQE) illustrated this trend more clearly. It was also found that the effect of the surface plasmon on light absorption dominates over that of the antireflection film at the resonance wavelength which is an important factor determining the light trapping. Moreover, surface plasmon is determined by both the Si substrate and the SiO2 spacer. For self-assembled Ag particles on the surface of the solar cells in our experiments, appropriate spacer thickness (9-35 nm) could broaden the plasmon resonance, narrow the photocurrent suppression range, weaken the suppression amplitude and strengthen the gain at the resonance wavelength, while still providing antireflection effect.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527–1536 (2011).
    [CrossRef]
  2. T. H. Chang, P. H. Wu, S. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, and Y. K. Su, “Efficiency enhancement in GaAs solar cells using self-assembled microspheres,” Opt. Express 17(8), 6519–6524 (2009).
    [CrossRef] [PubMed]
  3. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
    [CrossRef] [PubMed]
  4. J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
    [CrossRef]
  5. W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
    [CrossRef]
  6. M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
    [CrossRef]
  7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
    [CrossRef] [PubMed]
  8. Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
    [CrossRef]
  9. U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express 18(16), 17322–17338 (2010).
    [CrossRef] [PubMed]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  11. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003).
    [CrossRef]
  12. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
    [CrossRef]
  13. R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).
  14. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
    [CrossRef]
  15. http://rsb.info.nih.gov/ij/ .
  16. http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  17. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
    [CrossRef]
  18. N. D. Arora, S. G. Chamberlain, and D. J. Roulston, “Diffusion length determination in p-n junction diodes and solar cells,” Appl. Phys. Lett. 37(3), 325 (1980).
    [CrossRef]

2011

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527–1536 (2011).
[CrossRef]

2010

U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express 18(16), 17322–17338 (2010).
[CrossRef] [PubMed]

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

2009

2007

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

2005

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003).
[CrossRef]

1980

N. D. Arora, S. G. Chamberlain, and D. J. Roulston, “Diffusion length determination in p-n junction diodes and solar cells,” Appl. Phys. Lett. 37(3), 325 (1980).
[CrossRef]

Arora, N. D.

N. D. Arora, S. G. Chamberlain, and D. J. Roulston, “Diffusion length determination in p-n junction diodes and solar cells,” Appl. Phys. Lett. 37(3), 325 (1980).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Beck, F.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Beck, F. J.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Belaidi, A.

T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527–1536 (2011).
[CrossRef]

Campbell, P.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Catchpole, K. R.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Chafiq, A.

M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
[CrossRef]

Chamberlain, S. G.

N. D. Arora, S. G. Chamberlain, and D. J. Roulston, “Diffusion length determination in p-n junction diodes and solar cells,” Appl. Phys. Lett. 37(3), 325 (1980).
[CrossRef]

Chan, C. H.

Chang, T. H.

Chang, Y. A.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Chen, C. C.

Chen, S. H.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003).
[CrossRef]

Dewan, R.

Dittrich, T.

T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527–1536 (2011).
[CrossRef]

Ennaoui, A.

T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527–1536 (2011).
[CrossRef]

Faissat, J.

M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
[CrossRef]

Geng, Z. X.

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

Gonzalez-Valls, I.

M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
[CrossRef]

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Guler, U.

Jaegermann, W.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Ji, A.

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003).
[CrossRef]

Klein, A.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Knipp, D.

Koenderink, A. F.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

Kunz, O.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Kuo, H. C.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Kuo, S. Y.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Lai, F.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Laih, L. H.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Laih, L. W.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Lee, C. C.

Li, J. M.

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

Li, Y. Q.

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

Lira-Cantu, M.

M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
[CrossRef]

Liu, W.

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

Lu, T. C.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Marinkovic, M.

Mertens, H.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

Modes, T.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Motzko, M.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Noriega, R.

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Phadke, S.

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

Roulston, D. J.

N. D. Arora, S. G. Chamberlain, and D. J. Roulston, “Diffusion length determination in p-n junction diodes and solar cells,” Appl. Phys. Lett. 37(3), 325 (1980).
[CrossRef]

Salleo, A.

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Schaffner, J.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003).
[CrossRef]

Schimper, H. J.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Su, Y. K.

Swirschuk, A.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Tueschen, A.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Turan, R.

Varlamov, S.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Wang, S. C.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Wang, X. D.

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

Wu, P. H.

Xu, R.

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

Xu, X. N.

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

Yang, F. H.

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Yu, Y.

M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003).
[CrossRef]

Zywitzki, O.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

Appl. Phys. Lett.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

N. D. Arora, S. G. Chamberlain, and D. J. Roulston, “Diffusion length determination in p-n junction diodes and solar cells,” Appl. Phys. Lett. 37(3), 325 (1980).
[CrossRef]

Chin. Phys. B

R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).

J. Appl. Phys.

J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011).
[CrossRef]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[CrossRef]

J. Phys. Chem.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010).
[CrossRef]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells

W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011).
[CrossRef]

M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011).
[CrossRef]

T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527–1536 (2011).
[CrossRef]

Other

http://rsb.info.nih.gov/ij/ .

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental design.

Fig. 2
Fig. 2

(a) Scanning electron microscopy (SEM) of Ag nanoparticles on Silicon substrates coated with the SiO2 layers with different thicknesses. (b) The corresponding distribution of particle sizes. The numbers at the top right corner indicate the thicknesses of the SiO2 layers.

Fig. 3
Fig. 3

Photovoltaic I-V curves for the samples after Ag particles deposition under one-sun illumination (AM1.5, 100 mWcm−2) using a solar simulator. The numbers at the down left corner indicate the thicknesses of SiO2 layers.

Fig. 4
Fig. 4

The external quantum efficiency (EQE) of the Si solar cells with Ag nanoparticles, separated from the Si substrate with different thickness of SiO2 layer. The numbers at the bottom shows the oxide thicknesses.

Fig. 5
Fig. 5

The Isc obtained from the EQE spectra by integrating over the sun spectrum in comparison to the values of Isc measured with the sun simulator.

Fig. 6
Fig. 6

Measured EQE as a function of wavelength for cells after Ag deposition, shown as difference relative to reference EQE of the same cells prior to the nanoparticles deposition.

Fig. 7
Fig. 7

(a) Calculated normalized scattering cross section (Qscat). (b) Fraction of the scattered light into the substrate [Fsub] for Ag nanoparticles. (c) Fraction of light coupled into the substrate. The particles are separated from the Si substrate by SiO2 films with different thicknesses. The numbers at the corner indicate the thickness of SiO2 layer.

Tables (1)

Tables Icon

Table 1 Photovoltaic performance of the solar cells coated by different thickness of oxide after Ag deposition

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EQE= L p L p +1/α (1R)* e α(d+w) L p L p +1/α (1R)

Metrics