## Abstract

In this paper we compare experimentally two methods of detecting optical vortices from Shack-Hartmann wavefront sensor (SHWFS) data, the vortex potential and the contour sum methods. The experimental setup uses a spatial light modulator (SLM) to generate turbulent fields with vortices. In the experiment, many fields are generated and detected by a SHWFS, and data is analysed by the two vortex detection methods. We conclude that the vortex potential method is more successful in locating vortices in these fields.

© 2011 OSA

Full Article |

PDF Article
### Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${R}_{\pi /2}s=\left(\frac{{s}_{y}}{-{s}_{x}}\right),$$
(2)
$${M}^{\prime}={({M}^{*}M+{m}^{2})}^{-1}{M}^{*},$$
(3)
$$V={M}^{\prime}{R}_{\pi /2}s.$$
(4)
$${\oint}_{C}\nabla \varphi \cdot \text{d}l=\pm m2\pi .$$
(5)
$$\begin{array}{l}\sum \left(i,j\right)={s}^{x}\left(i,j\right)+{s}^{x}\left(i,j+1\right)-{s}^{x}\left(i+1,j+1\right)-{s}^{x}\left(i+1,j\right)\\ \hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}-{s}^{y}\left(i,j\right)+{s}^{y}\left(i,j+1\right)+{s}^{y}\left(i+1,j+1\right)-{s}^{y}\left(i+1,j\right),\end{array}$$
(6)
$$\nabla {\varphi}_{\mathit{total}}=\nabla {\varphi}_{\text{lmse}}+\nabla {\varphi}_{\text{sd}},$$