Abstract

We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U.S. Environmental Protection Agency, “Mercury study report to congress, Vol. I: Executive Summary,” EPA-452/R-97–003 (December, 1997).
  2. http://www.epa.gov/CAMR/ .
  3. Ministry of Environmental Protection of China, “Emission standard of air pollutants for thermal power plants,” GB13223–2011 (July, 2011).
  4. J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
    [CrossRef]
  5. D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
    [CrossRef]
  6. S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
    [CrossRef]
  7. T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
    [CrossRef] [PubMed]
  8. H. Edner, A. Sunesson, S. Svanberg, L. Unéus, and S. Wallin, “Differential optical absorption spectroscopy system used for atmospheric mercury monitoring,” Appl. Opt. 25(3), 403–409 (1986).
    [CrossRef] [PubMed]
  9. E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
    [CrossRef]
  10. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76(10), 1234–1236 (2000).
    [CrossRef]
  11. A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
    [CrossRef]
  12. T. N. Anderson, J. K. Magnuson, and R. P. Lucht, “Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury,” Appl. Phys. B 87(2), 341–353 (2007).
    [CrossRef]
  13. R. Wallenstein and T. W. Hänsch, “Powerful dye laser oscillator-amplifier system for high resolution spectroscopy,” Opt. Commun. 14(3), 353–357 (1975).
    [CrossRef]
  14. M. Aldén, H. Edner, and S. Svanberg, “Remote measurement of atmospheric mercury using differential absorption lidar,” Opt. Lett. 7(5), 221–223 (1982).
    [CrossRef] [PubMed]
  15. M. Sjöholm, P. Weibring, H. Edner, and S. Svanberg, “Atomic mercury flux monitoring using an optical parametric oscillator based lidar system,” Opt. Express 12(4), 551–556 (2004).
    [CrossRef] [PubMed]
  16. J. Paul, Y. Kaneda, T. L. Wang, C. Lytle, J. V. Moloney, and R. J. Jones, “Doppler-free spectroscopy of mercury at 253.7 nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser,” Opt. Lett. 36(1), 61–63 (2011).
    [CrossRef] [PubMed]
  17. M. Scheid, F. Markert, J. Walz, J. Y. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett. 32(8), 955–957 (2007).
    [CrossRef] [PubMed]
  18. G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
    [CrossRef]
  19. X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47(13), 2392–2398 (2008).
    [CrossRef] [PubMed]
  20. X. T. Lou, G. Somesfalean, B. Chen, Y. G. Zhang, H. S. Wang, Z. G. Zhang, S. H. Wu, and Y. K. Qin, “Simultaneous detection of multiple-gas species by correlation spectroscopy using a multimode diode laser,” Opt. Lett. 35(11), 1749–1751 (2010).
    [CrossRef] [PubMed]
  21. M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
    [CrossRef]
  22. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
    [CrossRef]
  23. Y. Nishimura and T. Fujimoto, “?=2537 ? line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury-vapor,” Appl. Phys. B 38(2), 91–98 (1985).
    [CrossRef]
  24. A. C. Vandaele, C. Hermans, and S. Fally, “Fourier transform measurements of SO(2) absorption cross sections: II. Temperature dependence in the 29 000-44 000 cm(?1) (227-345 nm) region,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2115–2126 (2009).
    [CrossRef]

2011 (2)

2010 (1)

2009 (2)

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

A. C. Vandaele, C. Hermans, and S. Fally, “Fourier transform measurements of SO(2) absorption cross sections: II. Temperature dependence in the 29 000-44 000 cm(?1) (227-345 nm) region,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2115–2126 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. Scheid, F. Markert, J. Walz, J. Y. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett. 32(8), 955–957 (2007).
[CrossRef] [PubMed]

T. N. Anderson, J. K. Magnuson, and R. P. Lucht, “Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury,” Appl. Phys. B 87(2), 341–353 (2007).
[CrossRef]

2006 (1)

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[CrossRef]

2005 (2)

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
[CrossRef]

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

2004 (3)

M. Sjöholm, P. Weibring, H. Edner, and S. Svanberg, “Atomic mercury flux monitoring using an optical parametric oscillator based lidar system,” Opt. Express 12(4), 551–556 (2004).
[CrossRef] [PubMed]

D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
[CrossRef]

S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
[CrossRef]

2003 (1)

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

2000 (1)

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76(10), 1234–1236 (2000).
[CrossRef]

1986 (1)

1985 (1)

Y. Nishimura and T. Fujimoto, “?=2537 ? line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury-vapor,” Appl. Phys. B 38(2), 91–98 (1985).
[CrossRef]

1982 (1)

1975 (2)

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

R. Wallenstein and T. W. Hänsch, “Powerful dye laser oscillator-amplifier system for high resolution spectroscopy,” Opt. Commun. 14(3), 353–357 (1975).
[CrossRef]

Aldén, M.

Allen, J. W.

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76(10), 1234–1236 (2000).
[CrossRef]

Anderson, T. N.

T. N. Anderson, J. K. Magnuson, and R. P. Lucht, “Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury,” Appl. Phys. B 87(2), 341–353 (2007).
[CrossRef]

Benson, S. A.

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

Brickett, L. A.

D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
[CrossRef]

Carruthers, A. E.

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

Chang, B.

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

Chen, B.

Chu, P.

D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
[CrossRef]

Church, D. A.

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

Dholakia, K.

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

Edner, H.

Fally, S.

A. C. Vandaele, C. Hermans, and S. Fally, “Fourier transform measurements of SO(2) absorption cross sections: II. Temperature dependence in the 29 000-44 000 cm(?1) (227-345 nm) region,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2115–2126 (2009).
[CrossRef]

Friend, D. G.

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[CrossRef]

Fujimoto, T.

Y. Nishimura and T. Fujimoto, “?=2537 ? line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury-vapor,” Appl. Phys. B 38(2), 91–98 (1985).
[CrossRef]

Galbreath, K. C.

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

Gao, H.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
[CrossRef]

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76(10), 1234–1236 (2000).
[CrossRef]

Hadeishi, T.

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

Hall, E. S.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Hänsch, T. W.

Hashmonay, R.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Hermans, C.

A. C. Vandaele, C. Hermans, and S. Fally, “Fourier transform measurements of SO(2) absorption cross sections: II. Temperature dependence in the 29 000-44 000 cm(?1) (227-345 nm) region,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2115–2126 (2009).
[CrossRef]

Huber, M. L.

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[CrossRef]

Jones, R. J.

Kaneda, Y.

Kirchner, M.

Laesecke, A.

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[CrossRef]

Lake, T. K.

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

Laudal, D. L.

D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
[CrossRef]

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

Lee Jones, D.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Lou, X. T.

Lucht, R. P.

T. N. Anderson, J. K. Magnuson, and R. P. Lucht, “Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury,” Appl. Phys. B 87(2), 341–353 (2007).
[CrossRef]

Lytle, C.

Magnuson, J. K.

T. N. Anderson, J. K. Magnuson, and R. P. Lucht, “Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury,” Appl. Phys. B 87(2), 341–353 (2007).
[CrossRef]

Mann, M. D.

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

Markert, F.

Mashyanov, N.

S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
[CrossRef]

McLaughlin, R. D.

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

Modrak, M.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Moloney, J. V.

Nakamura, M.

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

Nishimura, Y.

Y. Nishimura and T. Fujimoto, “?=2537 ? line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury-vapor,” Appl. Phys. B 38(2), 91–98 (1985).
[CrossRef]

Norwood, P.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Olson, E. S.

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

Paul, J.

Pavlish, J. H.

D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
[CrossRef]

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

Persson, L.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
[CrossRef]

Pogarev, S.

S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
[CrossRef]

Qin, Y. K.

Ryzhov, V.

S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
[CrossRef]

Scheid, M.

Secrest, C.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Shah, A.

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

Sholupov, S.

S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
[CrossRef]

Shores, R. C.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Sibbett, W.

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

Sjoholm, M.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
[CrossRef]

Sjöholm, M.

Somesfalean, G.

X. T. Lou, G. Somesfalean, B. Chen, Y. G. Zhang, H. S. Wang, Z. G. Zhang, S. H. Wu, and Y. K. Qin, “Simultaneous detection of multiple-gas species by correlation spectroscopy using a multimode diode laser,” Opt. Lett. 35(11), 1749–1751 (2010).
[CrossRef] [PubMed]

X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47(13), 2392–2398 (2008).
[CrossRef] [PubMed]

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76(10), 1234–1236 (2000).
[CrossRef]

Sondreal, E. A.

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

Stroganov, A.

S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
[CrossRef]

Sunesson, A.

Svanberg, S.

Svensson, T.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
[CrossRef]

Thoma, E. D.

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Thompson, J. S.

D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
[CrossRef]

Unéus, L.

Vandaele, A. C.

A. C. Vandaele, C. Hermans, and S. Fally, “Fourier transform measurements of SO(2) absorption cross sections: II. Temperature dependence in the 29 000-44 000 cm(?1) (227-345 nm) region,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2115–2126 (2009).
[CrossRef]

Wallenstein, R.

R. Wallenstein and T. W. Hänsch, “Powerful dye laser oscillator-amplifier system for high resolution spectroscopy,” Opt. Commun. 14(3), 353–357 (1975).
[CrossRef]

Wallin, S.

Walz, J.

Wang, H. S.

Wang, J. Y.

Wang, T. L.

Weibring, P.

Werle, P.

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
[CrossRef]

Wu, S. H.

Zak, B. D.

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

Zhang, Y. G.

Zhang, Z. G.

Appl. Opt. (2)

Appl. Phys. B (3)

T. N. Anderson, J. K. Magnuson, and R. P. Lucht, “Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury,” Appl. Phys. B 87(2), 341–353 (2007).
[CrossRef]

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
[CrossRef]

Y. Nishimura and T. Fujimoto, “?=2537 ? line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury-vapor,” Appl. Phys. B 38(2), 91–98 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86(18), 184102 (2005).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76(10), 1234–1236 (2000).
[CrossRef]

Atmos. Environ. (1)

E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ. 43(3), 753–757 (2009).
[CrossRef]

Fuel Process. Technol. (3)

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol. 82(2-3), 89–165 (2003).
[CrossRef]

D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol. 85(6-7), 501–511 (2004).
[CrossRef]

S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol. 85(6-7), 473–485 (2004).
[CrossRef]

Ind. Eng. Chem. Res. (1)

M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res. 45(21), 7351–7361 (2006).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. C. Vandaele, C. Hermans, and S. Fally, “Fourier transform measurements of SO(2) absorption cross sections: II. Temperature dependence in the 29 000-44 000 cm(?1) (227-345 nm) region,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2115–2126 (2009).
[CrossRef]

Opt. Commun. (2)

A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun. 255(4-6), 261–266 (2005).
[CrossRef]

R. Wallenstein and T. W. Hänsch, “Powerful dye laser oscillator-amplifier system for high resolution spectroscopy,” Opt. Commun. 14(3), 353–357 (1975).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Science (1)

T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science 187(4174), 348–349 (1975).
[CrossRef] [PubMed]

Other (3)

U.S. Environmental Protection Agency, “Mercury study report to congress, Vol. I: Executive Summary,” EPA-452/R-97–003 (December, 1997).

http://www.epa.gov/CAMR/ .

Ministry of Environmental Protection of China, “Emission standard of air pollutants for thermal power plants,” GB13223–2011 (July, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Diagram of the MDL-COSPEC-based elemental mercury detection system.

Fig. 2
Fig. 2

Typical emission spectra of the violet diode laser operated at 33 °C and 110 mA (a) in free running condition and (b) with external grating feedback.

Fig. 3
Fig. 3

Emission spectra of the red diode laser employed with 32 °C operating temperature at different operating currents: (a) 44-54 mA and (b) 56-68 mA.

Fig. 4
Fig. 4

Typical mercury absorption signal pairs with 80 scans averaged: (a) Raw signals recorded by a DAQ card. (b) Direct absorption signals. (c) WMS-2f signals.

Fig. 5
Fig. 5

(a) Absorption signals for a 20-mm mercury cell and (b) corresponding etalon signals of the red diode laser. (c) UV light intensity variation during a ramp scan.

Fig. 6
Fig. 6

Plots of mercury absorption signals as a function of concentration.

Fig. 7
Fig. 7

Allan variance plot for an 80-min measurement series.

Fig. 8
Fig. 8

(a) Sample absorption signals of mercury vapor with and without interference by SO2 (2000 ppm, 10 cm) and (b) corresponding reference signals.

Fig. 9
Fig. 9

Simulated spectra of mercury vapor (1 μg/m3, 1 m) and SO2 (200 ppm, 1m) at atmospheric pressure.

Fig. 10
Fig. 10

Mercury absorption signals with different (a) operation currents of the violet DL; (b) temperatures of the violet DL; (c) feedback grating angles of the violet DL; (d) temperatures of the red DL.

Metrics