Abstract

Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy. The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Humecki, Practical Applications of Infrared Microspectroscopy (Marcel Dekker, Inc., 1995).
  2. J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
    [PubMed]
  3. J. E. Katon, A. J. Sommer, and P. L. Lang, “Infrared microspectroscopy,” Appl. Spectrosc. Rev. 25, 173–211 (1990).
  4. J. A. Reffner, P. A. Martoglio, and G. P. Williams, “Fourier transform infrared microscopical analysis with synchrotron radiation: The microscope optics and system performance (invited),” Rev. Sci. Instrum. 66, 1298–1302 (1995).
    [CrossRef]
  5. H. Imam, “Broad as a lamp, bright as a laser,” Nat. Photonics 2, 26–28 (2008).
    [CrossRef]
  6. S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  7. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
    [CrossRef] [PubMed]
  8. H. N. Paulsen, K. M. Hillingsø, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-stokes raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
    [CrossRef] [PubMed]
  9. R. Borlinghaus, Optical Fluorescence Microscopy - From the Spectral to the Nano Dimension (Springer Verlag, 2011).
  10. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5 ?m in zblan fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [CrossRef] [PubMed]
  11. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ?1.9 to 4.5 ?m in ZBLAN fiber with high average power generation beyond 3.8 ?m using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
    [CrossRef]
  12. J. Mandon, E. Sorokin, I. Sorokina, G. Guelachvili, and N. Picque, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
    [CrossRef] [PubMed]
  13. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  14. R. R. Alfano and S. L. Shapiro, “Emission in region 4000 to 7000 å via 4-photon coupling in glass,” Phys. Rev. Lett. 24, 584–586 (1970).
    [CrossRef]
  15. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. Martin Man, and P. S. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
    [CrossRef]
  16. N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).
  17. E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
    [CrossRef] [PubMed]
  18. L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc. 38, 237–240 (2005).
    [CrossRef]
  19. A. J. Sommer, L. G. Tisinger, C. Marcott, and G. M. Story, “Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope,” Appl. Spectrosc. 55, 252–256 (2001).
    [CrossRef]
  20. W. D. Duncan and G. P. Williams, “Infrared synchrotron radiation from electron storage rings,” Appl. Opt. 22, 2914–2923 (1983).
    [CrossRef] [PubMed]
  21. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [CrossRef]
  22. http://refractiveindex.info/ .
  23. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  24. T. M. Monro and H. Ebendorf-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
    [CrossRef]

2011 (2)

2009 (1)

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).

2008 (2)

2006 (4)

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Maze, “Mid-infrared supercontinuum generation to 4.5 ?m in zblan fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

T. M. Monro and H. Ebendorf-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

2005 (1)

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc. 38, 237–240 (2005).
[CrossRef]

2003 (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

H. N. Paulsen, K. M. Hillingsø, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-stokes raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

1995 (3)

J. A. Reffner, P. A. Martoglio, and G. P. Williams, “Fourier transform infrared microscopical analysis with synchrotron radiation: The microscope optics and system performance (invited),” Rev. Sci. Instrum. 66, 1298–1302 (1995).
[CrossRef]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

1990 (1)

J. E. Katon, A. J. Sommer, and P. L. Lang, “Infrared microspectroscopy,” Appl. Spectrosc. Rev. 25, 173–211 (1990).

1983 (1)

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in region 4000 to 7000 å via 4-photon coupling in glass,” Phys. Rev. Lett. 24, 584–586 (1970).
[CrossRef]

Alexander, V. V.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in region 4000 to 7000 å via 4-photon coupling in glass,” Phys. Rev. Lett. 24, 584–586 (1970).
[CrossRef]

Birks, T. A.

Borlinghaus, R.

R. Borlinghaus, Optical Fluorescence Microscopy - From the Spectral to the Nano Dimension (Springer Verlag, 2011).

Chan, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Dowrey, A. E.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Duncan, W. D.

Ebendorf-Heidepriem, H.

T. M. Monro and H. Ebendorf-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Freeman, M. J.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Guelachvili, G.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hillingsø, K. M.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Humecki, H.

H. Humecki, Practical Applications of Infrared Microspectroscopy (Marcel Dekker, Inc., 1995).

Imam, H.

H. Imam, “Broad as a lamp, bright as a laser,” Nat. Photonics 2, 26–28 (2008).
[CrossRef]

Islam, M. N.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Katon, J. E.

J. E. Katon, A. J. Sommer, and P. L. Lang, “Infrared microspectroscopy,” Appl. Spectrosc. Rev. 25, 173–211 (1990).

Keiding, S. R.

Knight, J. C.

Kulkarni, O. P.

Kumar, M.

Lang, P. L.

J. E. Katon, A. J. Sommer, and P. L. Lang, “Infrared microspectroscopy,” Appl. Spectrosc. Rev. 25, 173–211 (1990).

Larsen, J. J.

Levin, I. W.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Lewis, E. N.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Mandon, J.

Marcott, C.

A. J. Sommer, L. G. Tisinger, C. Marcott, and G. M. Story, “Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope,” Appl. Spectrosc. 55, 252–256 (2001).
[CrossRef]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Martin Man, T. P.

Martoglio, P. A.

J. A. Reffner, P. A. Martoglio, and G. P. Williams, “Fourier transform infrared microscopical analysis with synchrotron radiation: The microscope optics and system performance (invited),” Rev. Sci. Instrum. 66, 1298–1302 (1995).
[CrossRef]

Maze, G.

McGeehan, J.

J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
[PubMed]

Miller, L. M.

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc. 38, 237–240 (2005).
[CrossRef]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Monro, T. M.

T. M. Monro and H. Ebendorf-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Neelakandan, M.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Ortigosa-Blanch, A.

Paulsen, H. N.

Picque, N.

Poulain, M.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Ravelli, R. B. G.

J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
[PubMed]

Reeder, R. C.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Reffner, J. A.

J. A. Reffner, P. A. Martoglio, and G. P. Williams, “Fourier transform infrared microscopical analysis with synchrotron radiation: The microscope optics and system performance (invited),” Rev. Sci. Instrum. 66, 1298–1302 (1995).
[CrossRef]

Russell, P. S. J.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Sage, J. T.

J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
[PubMed]

Savage, N.

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in region 4000 to 7000 å via 4-photon coupling in glass,” Phys. Rev. Lett. 24, 584–586 (1970).
[CrossRef]

Smith, R. J.

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc. 38, 237–240 (2005).
[CrossRef]

Sommer, A. J.

Sorokin, E.

Sorokina, I.

Story, G. M.

A. J. Sommer, L. G. Tisinger, C. Marcott, and G. M. Story, “Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope,” Appl. Spectrosc. 55, 252–256 (2001).
[CrossRef]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Terry, F. L.

Terry, J. F. L.

Thøgersen, J.

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Tisinger, L. G.

Treado, P. J.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

van Thor, J. J.

J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
[PubMed]

Wadsworth, W. J.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Weik, M.

J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
[PubMed]

Williams, G. P.

J. A. Reffner, P. A. Martoglio, and G. P. Williams, “Fourier transform infrared microscopical analysis with synchrotron radiation: The microscope optics and system performance (invited),” Rev. Sci. Instrum. 66, 1298–1302 (1995).
[CrossRef]

W. D. Duncan and G. P. Williams, “Infrared synchrotron radiation from electron storage rings,” Appl. Opt. 22, 2914–2923 (1983).
[CrossRef] [PubMed]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Xia, C.

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Zhang, Y. B.

J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
[PubMed]

Anal. Chem. (1)

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, “Fourier transform spectroscopic imaging using an infrared focal-plane array detector,” Anal. Chem. 67, 3377–3381 (1995).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorf-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

J. E. Katon, A. J. Sommer, and P. L. Lang, “Infrared microspectroscopy,” Appl. Spectrosc. Rev. 25, 173–211 (1990).

Biochim. Biophys. Acta (1)

J. T. Sage, Y. B. Zhang, J. McGeehan, R. B. G. Ravelli, M. Weik, and J. J. van Thor, “Infrared protein crystallography,” Biochim. Biophys. Acta 1814, 760–777 (2011).
[PubMed]

J. Non-Cryst. Solids (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).

H. Imam, “Broad as a lamp, bright as a laser,” Nat. Photonics 2, 26–28 (2008).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

S. A. Diddams, D. J. Jones, J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in region 4000 to 7000 å via 4-photon coupling in glass,” Phys. Rev. Lett. 24, 584–586 (1970).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Reffner, P. A. Martoglio, and G. P. Williams, “Fourier transform infrared microscopical analysis with synchrotron radiation: The microscope optics and system performance (invited),” Rev. Sci. Instrum. 66, 1298–1302 (1995).
[CrossRef]

Science (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006).
[CrossRef] [PubMed]

Vib. Spectrosc. (1)

L. M. Miller and R. J. Smith, “Synchrotrons versus globars, point-detectors versus focal plane arrays: Selecting the best source and detector for specific infrared microspectroscopy and imaging applications,” Vib. Spectrosc. 38, 237–240 (2005).
[CrossRef]

Other (3)

http://refractiveindex.info/ .

R. Borlinghaus, Optical Fluorescence Microscopy - From the Spectral to the Nano Dimension (Springer Verlag, 2011).

H. Humecki, Practical Applications of Infrared Microspectroscopy (Marcel Dekker, Inc., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The IR microscope: The bright IR supercontinuum source is focused onto the sample. An image is obtained by raster scanning the sample and recording a transmission spectrum at each point. (b) The spectral output from the ZBLAN fiber. The red line indicates the wavelength of the ps pump laser and the blue line the ZDW of the fiber.

Fig. 2
Fig. 2

Blue/Red line: FTIR absorbance spectrum for 4 μm thick water and oil samples respectively. Dots: Absorbance spectrum of oil made by scanning the grating and using the IR SC source.

Fig. 3
Fig. 3

(a) Picture of sample oil/water mixture made with an optical microscope. (b) and (c) IR images of sample measured at 3.05 μm and 3.50 μm corresponding to wavelengths of high absorption in water and oil, respectively. The blue color indicates high absorption and the red low absorption. The image size is 300μm × 375μm and each pixel is 5μm × 5μm.

Fig. 4
Fig. 4

The measured and calculated spot-sizes in the waist region of the IR microscope. The results are shown for three representative wavelengths. The inset shows the calculated mode field radius of the fundamental mode in the ZBLAN fiber.

Metrics