Abstract

Here we present laboratory measurements of phytoplankton absorption for cultures and natural water samples using two different spectrophotometers, an Ultrapath system and a double beam spectrophotometer equipped with an integrating sphere (Lambda 850). The Ultrapath system provides simplified optics with high throughput efficiency, portability, and is relatively less expensive in comparison to conventional spectrophotometers. A more robust algorithm for correction of pathlength amplification (β) for particles retained on filter paper was determined for Lambda 850 in comparison to the Ultrapath. The Lambda 850 β algorithm (ODs(λ) = 0.405 [ODf(λ)] + 0.475 [ODf(λ)]2 ; r2 = 0.973; n = 7395) showed species and size dependence as indicated by the LISST 100X and HPLC chlorophyll-a concentration data. A better agreement was observed between the two spectrophotometers for filter paper measurements (r2 = 0.991; slope = 0.958; n = 130 for cultures and r2 = 0.978; slope = 0.957; n = 349 for natural samples), than for suspensions (r2 = 0.960; slope = 0.915; n = 92 for cultures and r2 = 0.960; slope = 0.921; n = 27 for natural samples). The differences in measurement of suspensions between the spectrophotometers could be attributed to volume scattering function and acceptance angle of the waveguide detector.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.) 42(10), 1773–1802 (1995).
    [CrossRef]
  2. M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42(1), 1–20 (1997).
    [CrossRef]
  3. G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
    [CrossRef]
  4. C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7(2), 207–217 (1962).
    [CrossRef]
  5. H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).
    [PubMed]
  6. B. G. Mitchell, “Algorithms for determining the absorption coefficients for aquatic particulates using the quantitative filter technique,” in Ocean Optics X, SPIE (Proceedings of SPIE, 1990), 137–148.
  7. C. S. Yentsch and D. A. Phinney, “A bridge between ocean optics and microbial ecology,” Limnol. Oceanogr. 34(8), 1694–1705 (1989).
    [CrossRef]
  8. D. A. Kiefer and J. B. Soohoo, “Spectral absorption by marine particles of coastal waters of Baja California,” Limnol. Oceanogr. 27(3), 492–499 (1982).
    [CrossRef]
  9. M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).
  10. B. G. Mitchell and D. A. Kiefer, “Chlorophyll-a specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 35, 639–663 (1988).
  11. A. Bricaud and D. Stramski, “Spectral absorption-coefficients of living phytoplankton and non-algal biogenous matter - a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).
    [CrossRef]
  12. C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).
    [CrossRef]
  13. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).
    [CrossRef]
  14. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved materials and phytoplankton for discrete water samples,” in Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume 4: Inherent optical properties: instruments, characterization, field measurements and data analysis protocols, (NASA Tech. Rep., Greenbelt, Maryland, 2003).
  15. N. B. Nelson and B. B. Prézelin, “Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions,” Appl. Opt. 32(33), 6710–6717 (1993).
    [CrossRef] [PubMed]
  16. S. Q. Duntley, “The optical properties of diffusing materials,” J. Opt. Soc. Am. 32(2), 61–70 (1942).
    [CrossRef]
  17. W. L. Butler, “Absorption of light by turbid materials,” J. Opt. Soc. Am. 52(3), 292–299 (1962).
    [CrossRef]
  18. S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).
    [CrossRef]
  19. B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
    [CrossRef]
  20. J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
    [CrossRef]
  21. Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).
    [CrossRef] [PubMed]
  22. L. Moore, R. Goericke, and S. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
    [CrossRef]
  23. T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).
  24. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
    [CrossRef]
  25. E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
    [CrossRef]
  26. M. Belz, P. Dress, A. Sukhitskiy, and S. Liu, “Linearity and effective optical pathlength of liquid waveguide capillary cells,” in Internal Standardization and Calibration Architectures for Chemical Sensors, (Proceedings of SPIE, Boston, MA, USA 1999), pp. 271–281.
  27. E. J. D'Sa and R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).
  28. J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, Proc. SPIE pp. 124–136 (1990).
  29. K. Fujiwara and K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow-injection analysis,” Anal. Chem. 57(6), 1012–1016 (1985).
    [CrossRef]
  30. R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res. 22(9), 1301–1310 (2002).
    [CrossRef]
  31. M. Belz, K. Larsen, and K. Klein, “Fiber optic sample cells for polychromatic detection of dissolved and particulate matter in natural waters,” in Advanced Environmental, Chemical, and Biological Sensing Technologies IV, (Proceedings of SPIE, Boston, MA, USA 2006).
  32. E. J. D'Sa, S. E. Lohrenz, C. L. Carroll, and H. Fein, “Liquid waveguide capillary flow cell for determining absorption of scattering suspensions: Comparison with an integrating sphere,” in Ocean Optics XIV, (Proceedings of SPIE, Hawaii, 1998).
  33. R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran,” Can. J. Microbiol. 8(2), 229–239 (1962).
    [CrossRef]
  34. R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” to be published in Appl. Opt. 154472 (2011).
  35. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
    [CrossRef]
  36. L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
    [CrossRef]
  37. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans 115(C8), C08024 (2010).
    [CrossRef]
  38. J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters,” Environ. Sci. Technol. 41(3), 695–702 (2007).
    [CrossRef] [PubMed]
  39. Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
    [CrossRef]
  40. J. R. Nelson and C. Y. Robertson, “Detrital spectral absorption - laboratory studies of visible-light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field-measurements,” J. Mar. Res. 51(1), 181–207 (1993).
    [CrossRef]
  41. A. Morel and A. Bricaud, “Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 28, 1375–1393 (1981).
  42. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, (Proceedings of SPIE, Bergen, Norway 1994), pp. 44–55.
  43. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons 1958) , Vol.84, pp. 198–199.
  44. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42(18), 3634–3646 (2003).
    [CrossRef] [PubMed]
  45. Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans 113(C4), C04023 (2008).
    [CrossRef]
  46. T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Tech Report (1972).
  47. A. Morel, “Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 34(7), 1093–1105 (1987).
    [CrossRef]

2010

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans 115(C8), C08024 (2010).
[CrossRef]

2008

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans 113(C4), C04023 (2008).
[CrossRef]

2007

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters,” Environ. Sci. Technol. 41(3), 695–702 (2007).
[CrossRef] [PubMed]

2005

Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
[CrossRef]

2003

2002

R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res. 22(9), 1301–1310 (2002).
[CrossRef]

2001

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).
[CrossRef] [PubMed]

E. J. D'Sa and R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

2000

S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

1999

E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
[CrossRef]

1998

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).
[CrossRef]

1997

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42(1), 1–20 (1997).
[CrossRef]

1996

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

1995

L. Moore, R. Goericke, and S. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
[CrossRef]

S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.) 42(10), 1773–1802 (1995).
[CrossRef]

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).
[CrossRef]

1994

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
[CrossRef]

T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).

1993

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

J. R. Nelson and C. Y. Robertson, “Detrital spectral absorption - laboratory studies of visible-light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field-measurements,” J. Mar. Res. 51(1), 181–207 (1993).
[CrossRef]

N. B. Nelson and B. B. Prézelin, “Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions,” Appl. Opt. 32(33), 6710–6717 (1993).
[CrossRef] [PubMed]

1990

A. Bricaud and D. Stramski, “Spectral absorption-coefficients of living phytoplankton and non-algal biogenous matter - a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).
[CrossRef]

1989

C. S. Yentsch and D. A. Phinney, “A bridge between ocean optics and microbial ecology,” Limnol. Oceanogr. 34(8), 1694–1705 (1989).
[CrossRef]

1988

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-a specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 35, 639–663 (1988).

1987

A. Morel, “Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 34(7), 1093–1105 (1987).
[CrossRef]

1985

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

K. Fujiwara and K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow-injection analysis,” Anal. Chem. 57(6), 1012–1016 (1985).
[CrossRef]

1982

D. A. Kiefer and J. B. Soohoo, “Spectral absorption by marine particles of coastal waters of Baja California,” Limnol. Oceanogr. 27(3), 492–499 (1982).
[CrossRef]

1981

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 28, 1375–1393 (1981).

1967

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).
[PubMed]

1962

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7(2), 207–217 (1962).
[CrossRef]

W. L. Butler, “Absorption of light by turbid materials,” J. Opt. Soc. Am. 52(3), 292–299 (1962).
[CrossRef]

R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran,” Can. J. Microbiol. 8(2), 229–239 (1962).
[CrossRef]

1942

Agrawal, Y. C.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans 113(C4), C04023 (2008).
[CrossRef]

Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

Ahn, J. H.

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters,” Environ. Sci. Technol. 41(3), 695–702 (2007).
[CrossRef] [PubMed]

Arbones, B.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

Azevedo, L.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

Behrenfeld, M. J.

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42(1), 1–20 (1997).
[CrossRef]

Belz, M.

R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res. 22(9), 1301–1310 (2002).
[CrossRef]

Blough, N. V.

E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
[CrossRef]

Boss, E.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

Bricaud, A.

A. Bricaud and D. Stramski, “Spectral absorption-coefficients of living phytoplankton and non-algal biogenous matter - a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 28, 1375–1393 (1981).

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[CrossRef]

Butler, W. L.

Carder, K. L.

T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).

Caverhill, C. M.

S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.) 42(10), 1773–1802 (1995).
[CrossRef]

Chisholm, S.

L. Moore, R. Goericke, and S. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
[CrossRef]

Cleveland, J. S.

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

Coble, P. G.

T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).

Del Castillo, C.

R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res. 22(9), 1301–1310 (2002).
[CrossRef]

D'Sa, E. J.

E. J. D'Sa and R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
[CrossRef]

Duntley, S. Q.

Falkowski, P. G.

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42(1), 1–20 (1997).
[CrossRef]

Ferrari, G. M.

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).
[CrossRef]

Figueiras, F. G.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

Finkel, Z. V.

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).
[CrossRef] [PubMed]

Fujiwara, K.

K. Fujiwara and K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow-injection analysis,” Anal. Chem. 57(6), 1012–1016 (1985).
[CrossRef]

Fuwa, K.

K. Fujiwara and K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow-injection analysis,” Anal. Chem. 57(6), 1012–1016 (1985).
[CrossRef]

Goericke, R.

L. Moore, R. Goericke, and S. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
[CrossRef]

Granskog, L.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
[CrossRef]

Grant, S. B.

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters,” Environ. Sci. Technol. 41(3), 695–702 (2007).
[CrossRef] [PubMed]

Guillard, R. R.

R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran,” Can. J. Microbiol. 8(2), 229–239 (1962).
[CrossRef]

Hawes, S. W.

T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).

Ichimura, S.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Irwin, A. J.

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).
[CrossRef] [PubMed]

Johnsen, G.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
[CrossRef]

Karp-Boss, L.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

Kiefer, D. A.

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-a specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 35, 639–663 (1988).

D. A. Kiefer and J. B. Soohoo, “Spectral absorption by marine particles of coastal waters of Baja California,” Limnol. Oceanogr. 27(3), 492–499 (1982).
[CrossRef]

Kishino, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Lee, Z. P.

T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).

Lohrenz, S. E.

S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).
[CrossRef]

Longhurst, A.

S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.) 42(10), 1773–1802 (1995).
[CrossRef]

Mikkelsen, O. A.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans 113(C4), C04023 (2008).
[CrossRef]

Miller, R. L.

R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res. 22(9), 1301–1310 (2002).
[CrossRef]

Mitchell, B. G.

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-a specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 35, 639–663 (1988).

Moore, L.

L. Moore, R. Goericke, and S. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
[CrossRef]

Morel, A.

A. Morel, “Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 34(7), 1093–1105 (1987).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 28, 1375–1393 (1981).

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[CrossRef]

Nelson, J. R.

J. R. Nelson and C. Y. Robertson, “Detrital spectral absorption - laboratory studies of visible-light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field-measurements,” J. Mar. Res. 51(1), 181–207 (1993).
[CrossRef]

Nelson, N. B.

Okami, N.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Peacock, T. G.

T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).

Phinney, D.

E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
[CrossRef]

Phinney, D. A.

C. S. Yentsch and D. A. Phinney, “A bridge between ocean optics and microbial ecology,” Limnol. Oceanogr. 34(8), 1694–1705 (1989).
[CrossRef]

Piskozub, J.

Platt, T.

S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.) 42(10), 1773–1802 (1995).
[CrossRef]

Pottsmith, H. C.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans 113(C4), C04023 (2008).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

Prézelin, B. B.

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[CrossRef]

Reynolds, R. A.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans 115(C8), C08024 (2010).
[CrossRef]

Robertson, C. Y.

J. R. Nelson and C. Y. Robertson, “Detrital spectral absorption - laboratory studies of visible-light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field-measurements,” J. Mar. Res. 51(1), 181–207 (1993).
[CrossRef]

Roesler, C. S.

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).
[CrossRef]

Ryther, J. H.

R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran,” Can. J. Microbiol. 8(2), 229–239 (1962).
[CrossRef]

Sakshaug, E.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
[CrossRef]

Samset, O.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.) 42(10), 1773–1802 (1995).
[CrossRef]

Soohoo, J. B.

D. A. Kiefer and J. B. Soohoo, “Spectral absorption by marine particles of coastal waters of Baja California,” Limnol. Oceanogr. 27(3), 492–499 (1982).
[CrossRef]

Steward, R. G.

E. J. D'Sa and R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
[CrossRef]

Stramski, D.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans 115(C8), C08024 (2010).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42(18), 3634–3646 (2003).
[CrossRef] [PubMed]

A. Bricaud and D. Stramski, “Spectral absorption-coefficients of living phytoplankton and non-algal biogenous matter - a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).
[CrossRef]

Takahashi, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Tassan, S.

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).
[CrossRef]

Trüper, H. G.

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).
[PubMed]

Trzaska, R.

R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res. 22(9), 1301–1310 (2002).
[CrossRef]

Vodacek, A.

E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
[CrossRef]

Weidemann, A. D.

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

Whitmire, A.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans 113(C4), C04023 (2008).
[CrossRef]

Wozniak, S. B.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans 115(C8), C08024 (2010).
[CrossRef]

Wright, V. M.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans 115(C8), C08024 (2010).
[CrossRef]

Yentsch, C. S.

C. S. Yentsch and D. A. Phinney, “A bridge between ocean optics and microbial ecology,” Limnol. Oceanogr. 34(8), 1694–1705 (1989).
[CrossRef]

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).
[PubMed]

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7(2), 207–217 (1962).
[CrossRef]

Zapata, M.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

Anal. Chem.

K. Fujiwara and K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow-injection analysis,” Anal. Chem. 57(6), 1012–1016 (1985).
[CrossRef]

Appl. Opt.

Bull. Mar. Sci.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Can. J. Microbiol.

R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran,” Can. J. Microbiol. 8(2), 229–239 (1962).
[CrossRef]

Cont. Shelf Res.

R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res. 22(9), 1301–1310 (2002).
[CrossRef]

Deep-Sea Res. (I Oceanogr. Res. Pap.)

A. Morel and A. Bricaud, “Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 28, 1375–1393 (1981).

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-a specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 35, 639–663 (1988).

A. Morel, “Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach,” Deep-Sea Res. (I Oceanogr. Res. Pap.) 34(7), 1093–1105 (1987).
[CrossRef]

Deep-Sea Res.(I Oceanogr. Res. Pap.)

S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.) 42(10), 1773–1802 (1995).
[CrossRef]

Environ. Sci. Technol.

J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters,” Environ. Sci. Technol. 41(3), 695–702 (2007).
[CrossRef] [PubMed]

Eos Trans. AGU

T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU 75, 22 (1994).

J. Bacteriol.

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).
[PubMed]

J. Exp. Mar. Biol. Ecol.

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).
[CrossRef] [PubMed]

J. Geophys. Res., C, Oceans

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans 115(C8), C08024 (2010).
[CrossRef]

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans 113(C4), C04023 (2008).
[CrossRef]

J. Mar. Res.

J. R. Nelson and C. Y. Robertson, “Detrital spectral absorption - laboratory studies of visible-light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field-measurements,” J. Mar. Res. 51(1), 181–207 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Plankton Res.

S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).
[CrossRef]

Limnol. Oceanogr.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[CrossRef]

E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr. 44(4), 1142–1148 (1999).
[CrossRef]

E. J. D'Sa and R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr. 46, 742–745 (2001).

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7(2), 207–217 (1962).
[CrossRef]

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42(1), 1–20 (1997).
[CrossRef]

C. S. Yentsch and D. A. Phinney, “A bridge between ocean optics and microbial ecology,” Limnol. Oceanogr. 34(8), 1694–1705 (1989).
[CrossRef]

D. A. Kiefer and J. B. Soohoo, “Spectral absorption by marine particles of coastal waters of Baja California,” Limnol. Oceanogr. 27(3), 492–499 (1982).
[CrossRef]

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[CrossRef]

Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50(6), 1787–1794 (2005).
[CrossRef]

A. Bricaud and D. Stramski, “Spectral absorption-coefficients of living phytoplankton and non-algal biogenous matter - a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).
[CrossRef]

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).
[CrossRef]

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).
[CrossRef]

Limnol. Oceanogr. Methods

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[CrossRef]

Mar. Ecol. Prog. Ser.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
[CrossRef]

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
[CrossRef]

L. Moore, R. Goericke, and S. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
[CrossRef]

Mar. Geol.

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

Other

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, (Proceedings of SPIE, Bergen, Norway 1994), pp. 44–55.

H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons 1958) , Vol.84, pp. 198–199.

B. G. Mitchell, “Algorithms for determining the absorption coefficients for aquatic particulates using the quantitative filter technique,” in Ocean Optics X, SPIE (Proceedings of SPIE, 1990), 137–148.

M. Belz, P. Dress, A. Sukhitskiy, and S. Liu, “Linearity and effective optical pathlength of liquid waveguide capillary cells,” in Internal Standardization and Calibration Architectures for Chemical Sensors, (Proceedings of SPIE, Boston, MA, USA 1999), pp. 271–281.

J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, Proc. SPIE pp. 124–136 (1990).

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” to be published in Appl. Opt. 154472 (2011).

M. Belz, K. Larsen, and K. Klein, “Fiber optic sample cells for polychromatic detection of dissolved and particulate matter in natural waters,” in Advanced Environmental, Chemical, and Biological Sensing Technologies IV, (Proceedings of SPIE, Boston, MA, USA 2006).

E. J. D'Sa, S. E. Lohrenz, C. L. Carroll, and H. Fein, “Liquid waveguide capillary flow cell for determining absorption of scattering suspensions: Comparison with an integrating sphere,” in Ocean Optics XIV, (Proceedings of SPIE, Hawaii, 1998).

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved materials and phytoplankton for discrete water samples,” in Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume 4: Inherent optical properties: instruments, characterization, field measurements and data analysis protocols, (NASA Tech. Rep., Greenbelt, Maryland, 2003).

T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Tech Report (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the Ultrapath system with a long pathlength capillary waveguide which is connected between 1 and 2 (shown in red) for measurements of suspensions, adapted from D’Sa et al., 1999 [25], and the GF/F filter holder which is connected between points 1 and 2 (shown in red) for filter paper measurements, adapted from Belz et al., 2006 [31]. Not to scale.

Fig. 2
Fig. 2

Relationship between optical density of particles in suspension (ODs(λ)) and optical density of particles on filter paper (ODf(λ)) measured on Lambda 850 (left panel) and Ultrapath (right panel), (a,b) for representative high and low concentration samples, (c,d) for all samples, the black solid line is the quadratic fit to the data, and (e,f) at 443 nm (solid black circles) and 676 nm (solid gray circles). The black and gray dashed lines represent the quadratic fit for 443 nm and 676 nm, respectively.

Fig. 3
Fig. 3

Comparison of spectral shape of optical density of particles on filter paper (ODf(λ)) (a) and suspension (ODs(λ)) (d) for Lambda 850 (solid lines) and Ultrapath (dotted lines) for two different cultures. ODf(λ) and ODs(λ) for Lambda 850 and Ultrapath at two wavelengths 443 nm (solid black circles) and 676 nm (solid gray circles) for (b,e) all cultures, and (c,f) natural samples, respectively. The black solid line is the best fit line and the black dashed line is the 1:1 fit.

Fig. 4
Fig. 4

(a) Linear response of optical density of suspension (ODs(λ)) for different concentration of pigment extracts measured on Lambda 850 (circle and diamond) and Ultrapath (plus and cross) at 676 nm and 443 nm, respectively, (b) response of ODs(λ) for different concentrations of pigment extract plus Maalox measured on Lambda 850 (circle and grey square) and Ultrapath (black plus and gray triangle) at 676 nm and 443 nm, respectively. Response of optical density of particles on filter paper (ODf(λ)) measured on Lambda 850 (hexagon) and Ultrapath (black cross) at 443 nm is shown for comparison.

Fig. 5
Fig. 5

Particle size distribution (PSD) obtained using LISST 100X for nine cultures (black solid circles and solid line). The results from FlowCAM done for few samples are shown for comparison (gray solid triangles and solid line). The PSD was normalized to the modal peak to facilitate comparisons.

Fig. 6
Fig. 6

Normalized volume scattering function (VSF) (ratio of VSF to the beam attenuation coefficient) for (a) cultures, and (b) natural samples. The Petzold, 1972 data (solid black circles and solid red line) for turbid harbor is shown for comparison.

Fig. 7
Fig. 7

Spectral values of optical density of suspension (ODs(λ)) measured in a cuvette on Lambda 850 (solid black line) and obtained by using β algorithm (dotted black line) developed in this study for Lambda 850 for cultures and natural samples.

Tables (2)

Tables Icon

Table 1 Definitions of terms and symbols used in the text

Tables Icon

Table 2 List of phytoplankton cultures and their coefficients (a and b) obtained by applying a quadratic fit (see Eq. (1)) between optical density of phytoplankton in suspension (ODs(λ)) and optical density of phytoplankton on filter paper (ODf(λ)). CL is the cell length and CW is the cell width. S.E. represents the standard error.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

OD s ( λ )=a[ OD f ( λ ) ]+b [ OD f ( λ ) ] 2
a WG ( λ ) = a( λ ) + εb( λ )
a( λ ) = a WG ( λ ) - a WG ( 750 )
( 1-ε ) = 0 20 β ( θ ) sinθ 

Metrics