Abstract

The recent discovery of strong nonlinear emission in metallic nanostructures has offered possibilities for realization of functional nano photonic devices. Here, we demonstrate a novel design of a plasmonic nano device for high conversion efficiency of second harmonic generation. A 4 × 4 bowtie aperture array is fabricated to have both plasmonic resonance for local field enhancement of the fundamental wave and Fabry-Pérot resonance for high transmission of second harmonic wave. Combining nano structures for exciting surface plasmon polariton and suppressing higher order diffraction and anti-reflection layer, we achieve a second harmonic conversion efficiency of 1.4×10−8 that is nearly an order of magnitude larger than the results published in recent literatures. We also theoretically analyze evidences of the role of double resonances tuned to the fundamental wave and the second harmonic wave, resulting in the augmentation of second harmonic response approximately an order of magnitude greater than that without the help of the resonance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
    [CrossRef] [PubMed]
  2. N. Kroo, G. Farkas, P. Dombi, and S. Varró, “Nonlinear processes induced by the enhanced, evanescent field of surface plasmons excited by femtosecond laser pulses,” Opt. Express 16(26), 21656–21661 (2008).
    [CrossRef] [PubMed]
  3. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008).
    [CrossRef] [PubMed]
  4. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [CrossRef] [PubMed]
  5. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
    [CrossRef] [PubMed]
  6. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15(21), 13894–13906 (2007).
    [CrossRef] [PubMed]
  7. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [CrossRef] [PubMed]
  8. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
    [CrossRef] [PubMed]
  9. R. Zhou, H. Lu, X. Liu, Y. Gong, and D. Mao, “Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes,” J. Opt. Soc. Am. B 27(11), 2405–2409 (2010).
    [CrossRef]
  10. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam and Boston, 2008).
  11. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
    [CrossRef] [PubMed]
  12. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
    [CrossRef] [PubMed]
  13. T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
    [CrossRef] [PubMed]
  14. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [CrossRef] [PubMed]
  15. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  16. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
    [CrossRef]
  17. E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
    [CrossRef]
  18. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [CrossRef] [PubMed]
  19. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
    [CrossRef] [PubMed]
  20. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
    [CrossRef] [PubMed]
  21. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
    [CrossRef] [PubMed]
  22. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [CrossRef]
  23. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [CrossRef] [PubMed]
  24. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  25. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
    [CrossRef] [PubMed]
  26. A. A. Zharov and N. A. Zharova, “Double-resonance plasmon-driven enhancement of nonlinear optical response in a metamaterial with coated nanoparticles,” JETP Lett. 92(4), 210–213 (2010).
    [CrossRef]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin and Heidelberg, 1988).
  28. E. K. L. Wong and G. L. Richmond, “Examination of the surface second harmonic response from noble metal surfaces at infrared wavelengths,” J. Chem. Phys. 99(7), 5500–5507 (1993).
    [CrossRef]
  29. P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett. 35(23), 4063–4065 (2010).
    [CrossRef] [PubMed]
  30. A. D. Raki?, A. B. Djuriši?, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  31. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982).
    [CrossRef] [PubMed]
  32. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79(23), 235109 (2009).
    [CrossRef]
  33. J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
    [CrossRef]
  34. M. W. Klein, M. Wegener, N.-A. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16(11), 8055 (2008).
    [CrossRef]
  35. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008).
    [CrossRef] [PubMed]
  36. H. Lu, X. Liu, R. Zhou, Y. Gong, and D. Mao, “Second-harmonic generation from metal-film nanohole arrays,” Appl. Opt. 49(12), 2347–2351 (2010).
    [CrossRef] [PubMed]

2011

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

2010

A. A. Zharov and N. A. Zharova, “Double-resonance plasmon-driven enhancement of nonlinear optical response in a metamaterial with coated nanoparticles,” JETP Lett. 92(4), 210–213 (2010).
[CrossRef]

P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett. 35(23), 4063–4065 (2010).
[CrossRef] [PubMed]

H. Lu, X. Liu, R. Zhou, Y. Gong, and D. Mao, “Second-harmonic generation from metal-film nanohole arrays,” Appl. Opt. 49(12), 2347–2351 (2010).
[CrossRef] [PubMed]

R. Zhou, H. Lu, X. Liu, Y. Gong, and D. Mao, “Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes,” J. Opt. Soc. Am. B 27(11), 2405–2409 (2010).
[CrossRef]

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

2009

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79(23), 235109 (2009).
[CrossRef]

2008

2007

T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15(21), 13894–13906 (2007).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

2006

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

2005

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2004

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

2003

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[CrossRef] [PubMed]

2002

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

1999

J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

A. D. Raki?, A. B. Djuriši?, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef] [PubMed]

1993

E. K. L. Wong and G. L. Richmond, “Examination of the surface second harmonic response from noble metal surfaces at infrared wavelengths,” J. Chem. Phys. 99(7), 5500–5507 (1993).
[CrossRef]

1982

Ambekar, R.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Bååk, T.

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[CrossRef] [PubMed]

Blair, S.

Blanchard, R.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Bonod, N.

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[CrossRef] [PubMed]

Brasselet, S.

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Capasso, F.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Claus, R. O.

J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
[CrossRef]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Decker, M.

Devaux, E.

Djurišic, A. B.

Dombi, P.

Dragnea, B.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

DuFort, C. C.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

P. Schön, N. Bonod, E. Devaux, J. Wenger, H. Rigneault, T. W. Ebbesen, and S. Brasselet, “Enhanced second-harmonic generation from individual metallic nanoapertures,” Opt. Lett. 35(23), 4063–4065 (2010).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Elazar, J. M.

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

Fang, N. X.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

Farkas, G.

Feth, N.

Feth, N.-A.

Figura, C.

J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
[CrossRef]

Fu, L.

Fung, K. H.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

Gatzogiannis, E.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Genevet, P.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

Gong, Y.

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Guo, H.

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

Harmsen, R. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Heflin, J. R.

J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
[CrossRef]

Hesselink, L.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Hoyer, W.

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Ishi, T.

Jiao, X.

Jin, E. X.

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Kats, M. A.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Kauranen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Klein, M. W.

Ko, K. D.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

Koch, S. W.

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

Kroo, N.

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Kumar, A.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Linden, S.

Linke, R. A.

Lippitz, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[CrossRef] [PubMed]

Liu, G. L.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

Liu, J.

Liu, N.

Liu, X.

Liu, Y.

J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
[CrossRef]

Lu, H.

Majewski, M. L.

Mao, D.

Marciu, D.

J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Meyrath, T. P.

Moloney, J. V.

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Nahata, A.

Niesler, F. B. P.

Novotny, L.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[CrossRef] [PubMed]

Ohashi, K.

Onuta, T.-D.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Orrit, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[CrossRef] [PubMed]

Palomba, S.

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Prangsma, J. C.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

Quidant, R.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Rakic, A. D.

Renger, J.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Richmond, G. L.

E. K. L. Wong and G. L. Richmond, “Examination of the surface second harmonic response from noble metal surfaces at infrared wavelengths,” J. Chem. Phys. 99(7), 5500–5507 (1993).
[CrossRef]

Rigneault, H.

Sandtke, M.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

Schaich, W. L.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Schön, P.

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Schweizer, H.

Scully, M. O.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Segerink, F. B.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Tetienne, J.-P.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Toussaint, K. C.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

van Dijk, M. A.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[CrossRef] [PubMed]

van Hulst, N.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

Varró, S.

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Waegele, M.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

Wegener, M.

Wenger, J.

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wong, E. K. L.

E. K. L. Wong and G. L. Richmond, “Examination of the surface second harmonic response from noble metal surfaces at infrared wavelengths,” J. Chem. Phys. 99(7), 5500–5507 (1993).
[CrossRef]

Xu, T.

Xu, X.

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Zeng, Y.

Zentgraf, T.

Zhang, G. P.

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Zharov, A. A.

A. A. Zharov and N. A. Zharova, “Double-resonance plasmon-driven enhancement of nonlinear optical response in a metamaterial with coated nanoparticles,” JETP Lett. 92(4), 210–213 (2010).
[CrossRef]

Zharova, N. A.

A. A. Zharov and N. A. Zharova, “Double-resonance plasmon-driven enhancement of nonlinear optical response in a metamaterial with coated nanoparticles,” JETP Lett. 92(4), 210–213 (2010).
[CrossRef]

Zhou, R.

Appl. Opt.

Appl. Phys. Lett.

J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74(4), 495–497 (1999).
[CrossRef]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

J. Chem. Phys.

E. K. L. Wong and G. L. Richmond, “Examination of the surface second harmonic response from noble metal surfaces at infrared wavelengths,” J. Chem. Phys. 99(7), 5500–5507 (1993).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

A. A. Zharov and N. A. Zharova, “Double-resonance plasmon-driven enhancement of nonlinear optical response in a metamaterial with coated nanoparticles,” JETP Lett. 92(4), 210–213 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano apertures for near field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

E. X. Jin and X. Xu, “Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Nano Lett.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10(12), 4880–4883 (2010).
[CrossRef] [PubMed]

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11(1), 61–65 (2011).
[CrossRef] [PubMed]

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7(3), 557–564 (2007).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5(4), 799–802 (2005).
[CrossRef] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79(23), 235109 (2009).
[CrossRef]

Phys. Rev. Lett.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[CrossRef] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101(5), 056802 (2008).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Science

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin and Heidelberg, 1988).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Amsterdam and Boston, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The geometrical configuration for a metallic BNA array generating SH emission in the forward direction, where a laser beam illuminates the BNAs milled in the silver film on a Si3N4-on-quartz substrate. The incident beam is polarized parallel to the bowtie axes that are laid horizontally in the figure. The silicon nitride layer of thickness d = 300 nm is used in implementing BNAs in a periodic array with a spacing a 0 = 400 nm. The silver film thickness t is optimized for enhancing SH response and set to 50 nm. (b) Simulated linear spectral transmission of single BNAs exhibiting double resonances due to the surface plasmon resonance and FP-like behavior of the metallic nanostructures.). Curves represent the linear dipole response of an individual BNA, quantified by normalized intensity of the electric field with horizontal (x) polarization at the center on the aperture’s exit plane. FDTD calculations are made from the pulse response of the BNAs with an outline length of 70 nm and ridge gap of 20 nm, varying in the silver film thickness t as 30 nm (red), 50 nm (blue), and 80 nm (greenThe dashed lines are guides to the eye, representing the design wavelengths for the fundamental (860 nm) and SH (430 nm) light.

Fig. 2
Fig. 2

FDTD-simulated electric-field amplitude distributions of a doubly resonant BNA with the same design and illumination used in Fig. 1(b). The fundamental SPR mode excited at 860 nm wavelength, is mapped in the (a) xz and (b) yz cross sections through the middle of the two bowtie tips and on the (c) xy plane at the aperture exit. (d-f) Corresponding cross sectional features of the FP-like resonance with an incident light at 430 nm wavelength. In all figures, the BNA’s bowtie axis and the direction of light polarization are fixed along the x-axis. Color bars are scaled as electric field amplitude normalized to the incident field. The dimension of the cross sections is in the unit of nm.

Fig. 3
Fig. 3

Theoretical prediction of the spectral intensity of the fundamental and SH response from doubly resonant BNAs for the design shown in Fig. 1(b). (a) Linear transmission of the BNAs as a function of the incident fundamental wavelength, evaluated from normalized intensity of the electric field with horizontal (x) polarization at the center on the aperture’s exit plane. (b) Relative efficiency of the SH signal buildup as a function of the SH wavelength of the fundamental (dashed lines), corresponding to the right vertical scale in arbitrary units. Here, the influence of the fundamental intensity difference was excluded by normalizing the strength of the SH dipole excitation. For comparison, the linear transmission curves at SH wavelengths (solid lines) are also plotted, corresponding to the left vertical scale. (c) Spectral profiles of overall SH emission intensity at the exit plane, obtained by multiplying the square of the fundamental intensity transmission (a) with the SH buildup efficiency (b).

Fig. 4
Fig. 4

Lateral geometry of (a) a symmetric BNA and (b) an asymmetric BNA in doubly resonant designs. (c) Corresponding linear transmission, evaluated at the center of the aperture on the BNA’s exit plane, as a function of the wavelength of incident light polarized along the x-axis (parallel to the bowtie axis). The linear transmission curves represent the spectral dependence of the local field enhancement factor relative to the incident light intensity.

Fig. 5
Fig. 5

SEM images of (a) symmetric BNAs and (b) asymmetric BNAs fabricated into 4 × 4 arrays. (c) A schematic of the experimental setup used to investigate the characteristics of the SH emission from the BNA arrays.

Fig. 6
Fig. 6

SH emission power measured as a function of the input power of the fundamental laser at 860 nm in the symmetric and asymmetric BNA arrays. Each set of experimental data was fit to a power law curve (solid line) with an exponent close to 2.

Fig. 7
Fig. 7

Wavelength-dependent SH emission power from the symmetric (squares) and asymmetric (circles) BNA arrays with a fundamental input power of 1.35 mW. The solid lines in the figure represent the simulated spectral response of the BNA arrays used to generate the SH signals.

Metrics