Abstract

Detection of fluorescence from a low quantum yield fluorophore is challenging for a fiber-optic probe, especially when an inexpensive and robust construction is desired. We propose a conceptually straightforward theoretical model to optimize the factors affecting the fluorescence-capture capability of a bifurcated/coaxial fiber-optic probe. Experimentally we verify that such a probe, if optimized, can detect the fluorescence of a polymer fluorophore with a low quantum yield of 0.0065.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [CrossRef] [PubMed]
  2. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53(6), 619–627 (1999).
    [CrossRef]
  3. L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
    [CrossRef] [PubMed]
  4. T. F. Coony, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids,” Appl. Spectrosc. 50(7), 836–848 (1996).
    [CrossRef]
  5. U. Bunting, F. Lewitzka, and P. Karlitschek, “Mathematical model of a laser-induced fluorescence fiber-optic sensor head for trace detection of pollutants in soil,” Appl. Spectrosc. 53(1), 49–56 (1999).
    [CrossRef]
  6. K. R. Rogers and E. J. Poziomek, “Fiber optic sensors for environmental monitoring,” Chemosphere 33(6), 1151–1174 (1996).
    [CrossRef]
  7. J. Ma and W. Bock, “Modeling of photonic crystal fiber with air holes sealed at the fiber end and its application to fluorescent light collection efficiency enhancement,” Opt. Express 13(7), 2385–2393 (2005).
    [CrossRef] [PubMed]
  8. X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
    [CrossRef] [PubMed]

2005 (2)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

J. Ma and W. Bock, “Modeling of photonic crystal fiber with air holes sealed at the fiber end and its application to fluorescent light collection efficiency enhancement,” Opt. Express 13(7), 2385–2393 (2005).
[CrossRef] [PubMed]

2003 (1)

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

2002 (1)

X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
[CrossRef] [PubMed]

1999 (2)

1996 (2)

Angel, S. M.

Bock, W.

Bunting, U.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Coony, T. F.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Guo, C. C.

X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
[CrossRef] [PubMed]

Jian, C.

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Karlitschek, P.

Lewitzka, F.

Li, Z. Z.

X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
[CrossRef] [PubMed]

Ma, J.

Marple, E.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Poziomek, E. J.

K. R. Rogers and E. J. Poziomek, “Fiber optic sensors for environmental monitoring,” Chemosphere 33(6), 1151–1174 (1996).
[CrossRef]

Rogers, K. R.

K. R. Rogers and E. J. Poziomek, “Fiber optic sensors for environmental monitoring,” Chemosphere 33(6), 1151–1174 (1996).
[CrossRef]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Shen, G. L.

X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
[CrossRef] [PubMed]

Shim, M. G.

Skinner, H. T.

Wach, M.

Wen-xu, L.

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

Wilson, B. C.

Yu, R. Q.

X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
[CrossRef] [PubMed]

Zhang, X. B.

X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
[CrossRef] [PubMed]

Anal. Chem. (2)

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

X. B. Zhang, C. C. Guo, Z. Z. Li, G. L. Shen, and R. Q. Yu, “An optical fiber chemical sensor for mercury ions based on a porphyrin dimer,” Anal. Chem. 74(4), 821–825 (2002).
[CrossRef] [PubMed]

Appl. Spectrosc. (3)

Chemosphere (1)

K. R. Rogers and E. J. Poziomek, “Fiber optic sensors for environmental monitoring,” Chemosphere 33(6), 1151–1174 (1996).
[CrossRef]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Bifurcated and co-axial fiber-optic probes. (a) Typical bifurcated fiber-optic probe. (b) Coaxial fiber-optic probe for enhanced light collection. (c) The bifurcated fiber-probe with parameters for theoretical analysis. Only one overlapping volume is available to capture fluorescent power. S1 and S (shaded) are two cross sections of this volume. In contrast to (c), six identical active volumes (not drawn) and thus six active areas are available for a coaxial fiber-optic probe, leading to a six-fold increase of the overall captured fluorescent power.

Fig. 2
Fig. 2

Some important conclusions from Eq. (15) are illustrated here. The data points or curve labeled as “This work” are associated with the coaxial fiber-optic probe in our experiment. The shaded areas of each figure indicate the parameters fixed for all curves in that figure. (a) Normalized captured power If at h = 0 vs. cladding thickness when H = 1000 μm. (b) Same as (a) except H = 3000 μm. (c) Impact of NA on If for two fibers, one with r = 100 μm, the other with r = 200 μm. (d) Impact of NA on initial depth H0 defined in Fig. 1(c), which describes the dead space in front of the fibers. (e) If vs the maximum detection depth H for the fiber used in this work and for the standard multimode fiber in fiber-optic communication. (f) Significant impact of fiber core radius r alone on If for fixed t, NA and H.

Fig. 3
Fig. 3

Fluorescence spectra of R6G and P1 in DMF captured by the optimized coaxial fiber-optic probe. (a) Strong and high quality fluorescence of R6G without an excitation laser trace; (b) Weak fluorescence of P1 with a strong excitation laser trace. Note the significant differences in their integration times and the quantum yields.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

P e_d = P e_d (h)const.
I f H 0 H P e_d (h)S(h)dh
I f =kQ I e εcl
d I f =kQ I e (h)εcdh=kQ[ P e_d (h)S(h) ]εcdh
I e (h)= P e_d (h)S(h)
P e_d (h)S(h)= P e_d (0)S(0)
P e_d (h)= P e_d (0) ( r R ) 2
S(h)=2[ R 2 sec 1 ( R r )r R 2 r 2 ]
d I f (h)=2×kQ P e_d (0) ( r R ) 2 [ R 2 sec 1 ( R r )r R 2 r 2 ]εcdh
I f (h=0)=γ H 0 H [ ( r R ) 2 ( R 2 sec 1 ( R r )r R 2 r 2 ) ]dh
I f (h=0)=γ r 2 H 0 H [ sec 1 ( R r ) r R 1 ( r R ) 2 ]dh
R=htg θ 0 +r, h=(Rr)ctg θ 0 ,
I f (h=0)=γ r 2 R 0 R [ sec 1 ( R r ) r R 1 ( r R ) 2 ]d[ (Rr)ctg θ 0 ] = γ R 0 R ( sec 1 ( R r ) r R 1 ( r R ) 2 )dR
I f (h=0)= γ { r R 0 r R r sec 1 udur r R 0 r R w 1 w 2 d 1 w }
I f = γ { [ R r arcsec R r ln( R r + ( R r ) 2 1 ][ R 0 r arcsec R 0 r ln( R 0 r + ( R 0 r ) 2 1 ] } + γ { [ 1 ( r R ) 2 ln 1+ 1 ( r R ) 2 r R ][ 1 ( r R 0 ) 2 ln 1+ 1 ( r R 0 ) 2 r R 0 ] }
γ =2×kQεc P e_d (0) r 3 ctg θ 0
I f_coaxial =6 I f

Metrics