Abstract

Using a vectorial picosecond self-diffraction method, we evaluate the modification of the speed of the sound in a silicon-nitride film containing silicon quantum dots prepared by remote plasma-enhanced chemical vapor deposition. Our non-contact technique is based on the stimulation of the electrostriction contribution to the nonlinearity of index exhibited by the sample in a multiwave mixing laser experiment. We identified the electronic birefringence using two of the incident beams to generate a self-diffraction signal, then, we modified the third order nonlinear response by means of the optical Kerr effect given by a phase-mismatched third beam which induced electrostriction. Our results indicated that the speed of the sound in a silicon-nitride film can be simultaneously tailored by an electronic nonlinear refractive index, and by an electrostriction effect, both resulting from silicon quantum dots doping.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Waggoner, C. P. Tan, and H. G. Craighead, “Atomic layer deposited silicon dioxide films on nanomechanical silicon nitride resonators,” J. Appl. Phys. 107(11), 114505 (2010).
    [CrossRef]
  2. A. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, 2003).
  3. Y. R. Shen, “Electrostriction optical Kerr effect and self-focusing of laser beams,” Phys. Lett. 20(4), 378–380 (1966).
    [CrossRef]
  4. M. S. Chang, “Bragg electrostriction in optical waveguides,” Appl. Opt. 16(7), 1960–1965 (1977).
    [CrossRef] [PubMed]
  5. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  6. C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
    [CrossRef]
  7. M. Klopfer and R. K. Jain, “Plasmonic quantum dots for nonlinear optical applications,” Opt. Mater. Express 1(7), 1353–1366 (2011).
    [CrossRef]
  8. G. Burlak, “Four-wave acousto-electromagnetic interactions in crystals with a nonlinear electrostriction,” Physica D 166(3-4), 197–207 (2002).
    [CrossRef]
  9. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
    [CrossRef]
  10. M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108(6), 063512 (2010).
    [CrossRef]
  11. G.-R. Lin, C.-W. Lian, C.-L. Wu, and Y.-H. Lin, “Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate,” Opt. Express 18(9), 9213–9219 (2010).
    [CrossRef] [PubMed]
  12. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
    [CrossRef] [PubMed]
  13. D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
    [CrossRef] [PubMed]
  14. Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).
  15. C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
    [CrossRef]
  16. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  17. A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
    [CrossRef] [PubMed]
  18. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).
    [CrossRef]
  19. A. Othonos, E. Lioudakis, and A. G. Nassiopoulou, “Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit Auger recombination,” Nanoscale Res. Lett. 3(9), 315–320 (2008).
    [CrossRef]

2011 (4)

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[CrossRef] [PubMed]

Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

M. Klopfer and R. K. Jain, “Plasmonic quantum dots for nonlinear optical applications,” Opt. Mater. Express 1(7), 1353–1366 (2011).
[CrossRef]

2010 (4)

G.-R. Lin, C.-W. Lian, C.-L. Wu, and Y.-H. Lin, “Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate,” Opt. Express 18(9), 9213–9219 (2010).
[CrossRef] [PubMed]

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108(6), 063512 (2010).
[CrossRef]

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

P. S. Waggoner, C. P. Tan, and H. G. Craighead, “Atomic layer deposited silicon dioxide films on nanomechanical silicon nitride resonators,” J. Appl. Phys. 107(11), 114505 (2010).
[CrossRef]

2009 (1)

2008 (3)

A. Othonos, E. Lioudakis, and A. G. Nassiopoulou, “Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit Auger recombination,” Nanoscale Res. Lett. 3(9), 315–320 (2008).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

2002 (1)

G. Burlak, “Four-wave acousto-electromagnetic interactions in crystals with a nonlinear electrostriction,” Physica D 166(3-4), 197–207 (2002).
[CrossRef]

1990 (1)

T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).
[CrossRef]

1977 (1)

1966 (1)

Y. R. Shen, “Electrostriction optical Kerr effect and self-focusing of laser beams,” Phys. Lett. 20(4), 378–380 (1966).
[CrossRef]

Akamine, S.

T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).
[CrossRef]

Albrecht, T. R.

T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).
[CrossRef]

Alonso, J. C.

Blasco, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Burlak, G.

G. Burlak, “Four-wave acousto-electromagnetic interactions in crystals with a nonlinear electrostriction,” Physica D 166(3-4), 197–207 (2002).
[CrossRef]

Carver, T. E.

T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).
[CrossRef]

Chang, M. S.

Cheang-Wong, J. C.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Craighead, H. G.

P. S. Waggoner, C. P. Tan, and H. G. Craighead, “Atomic layer deposited silicon dioxide films on nanomechanical silicon nitride resonators,” J. Appl. Phys. 107(11), 114505 (2010).
[CrossRef]

Crespo-Sosa, A.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Daldosso, N.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

de Boer, W. D. A. M.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[CrossRef] [PubMed]

Dohnalová, K.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[CrossRef] [PubMed]

Fedeli, J. M.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Fujii, M.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108(6), 063512 (2010).
[CrossRef]

Galán, J. V.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

García-Rupérez, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Garrido, B.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Gautier, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Gregorkiewicz, T.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[CrossRef] [PubMed]

Guider, R.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Hayashi, S.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108(6), 063512 (2010).
[CrossRef]

Hernández, S.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Imakita, K.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108(6), 063512 (2010).
[CrossRef]

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Ito, M.

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108(6), 063512 (2010).
[CrossRef]

Jain, R. K.

Jordana, E.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Khomenko, A. V.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Klopfer, M.

Lebour, Y.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Lian, C.-W.

Lin, G.-R.

Lin, Y.-H.

Lioudakis, E.

A. Othonos, E. Lioudakis, and A. G. Nassiopoulou, “Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit Auger recombination,” Nanoscale Res. Lett. 3(9), 315–320 (2008).
[CrossRef]

López-Suárez, A.

Mao, Y.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Martí, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Martínez, A.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Nassiopoulou, A. G.

A. Othonos, E. Lioudakis, and A. G. Nassiopoulou, “Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit Auger recombination,” Nanoscale Res. Lett. 3(9), 315–320 (2008).
[CrossRef]

Oliver, A.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Ortiz, A.

Othonos, A.

A. Othonos, E. Lioudakis, and A. G. Nassiopoulou, “Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit Auger recombination,” Nanoscale Res. Lett. 3(9), 315–320 (2008).
[CrossRef]

Pavesi, L.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Quate, C. F.

T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).
[CrossRef]

Rangel-Rojo, R.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Reyes-Esqueda, J. A.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Rodríguez-Fernández, L.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Sanchis, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Santana, G.

Shen, Y. R.

Y. R. Shen, “Electrostriction optical Kerr effect and self-focusing of laser beams,” Phys. Lett. 20(4), 378–380 (1966).
[CrossRef]

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Spano, R.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Tamayo-Rivera, L.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Tan, C. P.

P. S. Waggoner, C. P. Tan, and H. G. Craighead, “Atomic layer deposited silicon dioxide films on nanomechanical silicon nitride resonators,” J. Appl. Phys. 107(11), 114505 (2010).
[CrossRef]

Timmerman, D.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[CrossRef] [PubMed]

Torres-Torres, C.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Valenta, J.

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[CrossRef] [PubMed]

Waggoner, P. S.

P. S. Waggoner, C. P. Tan, and H. G. Craighead, “Atomic layer deposited silicon dioxide films on nanomechanical silicon nitride resonators,” J. Appl. Phys. 107(11), 114505 (2010).
[CrossRef]

Watson, W. H.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Wu, C.-L.

Yang, F.

Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).

Yang, J.

Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).

Zhang, F.

Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).

Zheng, H.

Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).

Zhu, Y.

Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).

Appl. Opt. (1)

J. Appl. Phys. (3)

M. Ito, K. Imakita, M. Fujii, and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108(6), 063512 (2010).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

P. S. Waggoner, C. P. Tan, and H. G. Craighead, “Atomic layer deposited silicon dioxide films on nanomechanical silicon nitride resonators,” J. Appl. Phys. 107(11), 114505 (2010).
[CrossRef]

J. Vac. Sci. Technol. A (1)

T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for atomic force microscopy,” J. Vac. Sci. Technol. A 8(4), 3386–3396 (1990).
[CrossRef]

Microelectromech. Syst. (1)

Y. Zhu, F. Zhang, J. Yang, H. Zheng, and F. Yang, “Stability of mechanical properties for submicrometer single-crystal silicon cantilever under cyclic load,” Microelectromech. Syst. 20, 178–183 (2011).

Nano Lett. (1)

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10(4), 1506–1511 (2010).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

A. Othonos, E. Lioudakis, and A. G. Nassiopoulou, “Surface-related states in oxidized silicon nanocrystals enhance carrier relaxation and inhibit Auger recombination,” Nanoscale Res. Lett. 3(9), 315–320 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

D. Timmerman, J. Valenta, K. Dohnalová, W. D. A. M. de Boer, and T. Gregorkiewicz, “Step-like enhancement of luminescence quantum yield of silicon nanocrystals,” Nat. Nanotechnol. 6(11), 710–713 (2011).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: Principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Lett. (1)

Y. R. Shen, “Electrostriction optical Kerr effect and self-focusing of laser beams,” Phys. Lett. 20(4), 378–380 (1966).
[CrossRef]

Physica D (1)

G. Burlak, “Four-wave acousto-electromagnetic interactions in crystals with a nonlinear electrostriction,” Physica D 166(3-4), 197–207 (2002).
[CrossRef]

Other (3)

A. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, 2003).

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

R. W. Boyd, Nonlinear Optics (Academic Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Nonlinear optical experimental setup.

Fig. 2
Fig. 2

(a) Typical HRTEM micrograph. (b) Statistical cumulative distribution of particle size. (c) Linear transmittance spectra.

Fig. 3
Fig. 3

(a) Vectorial self-diffraction results. (b) Modification of self-diffraction efficiency by the phase-mismatched beam. (c) Change in the speed of the induced mechanical waves vs. n2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E 1± ( z )=[ J 0 ( Ψ ± ( 1 ) ) E 1± +i J 1 ( Ψ ± ( 1 ) ) E 2± ]exp( i Ψ ± ( 0 ) α( I )z 2 ),
E 2± ( z )=[ J 0 ( Ψ ± ( 1 ) ) E 2± i J 1 ( Ψ ± ( 1 ) ) E 1± ]exp( i Ψ ± ( 0 ) α( I )z 2 ),
E 3± ( z )=[ i J 1 ( Ψ ± ( 1 ) ) E 1± J 2 ( Ψ ± ( 1 ) ) E 2± ]exp( i Ψ ± ( 0 ) α( I )z 2 ),
E 4± ( z )=[ i J 1 ( Ψ ± ( 1 ) ) E 2 ± J 2 ( Ψ ± ( 1 ) ) E 1 ± ]exp( i Ψ ± ( 0 ) α( I )z 2 ),
Ψ ± ( 0 ) = 4 π 2 z n 0 λ [ A( | E 1 ± | 2 + | E 2 ± | 2 )+( A+B )( | E 1 | 2 + | E 2 | 2 ) ],
Ψ ± ( 1 ) = 4 π 2 z n 0 λ [ A E 1 ± E 2± * +( A+B ) E 1 E 2 * ].
χ 1111 ( 3 ) = χ 1122 ( 3 ) + χ 1212 ( 3 ) + χ 1221 ( 3 ) ;
χ iiii (3) = 1 ε o γ e υ a 2 ε ρ = ε o 27 υ a 2 ρ ( n o 2 +2 ) 2 ( n o 2 1 ) 2 ,
n 2 = 12 π 2 n 0 2 c 10 7 χ 1111 (3) ,

Metrics