Abstract

Experimental results on light bending in a non-homogenizable graded photonic crystal operating at optical wavelengths are presented in this paper. A square lattice silicon on insulator photonic crystal made of a two-dimensional chirp of the air-hole filling factor is exploited to produce the bending effect in a near bandgap frequency range. The sensitivity of light paths to wavelength tuning is also exploited to show demultiplexing capability with low insertion loss (<2dB) and low crosstalk (~-20dB). This experimental demonstration opens opportunities for light manipulation using a generalized two-dimensional chirp of photonic crystal lattice parameters. It also constitutes an alternative solution to the use of photonic metamaterials combining dielectric and metallic materials with sub-wavelength unit cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley and Sons, 2006), pp. 211–221.
  4. Z. Saïd, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer-Verlag, 2008), pp. 3–10, Chap. 3, p. 106.
  5. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
    [CrossRef] [PubMed]
  6. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
    [CrossRef] [PubMed]
  7. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
    [CrossRef] [PubMed]
  8. Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
    [CrossRef]
  9. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
    [CrossRef] [PubMed]
  10. W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
    [CrossRef]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [CrossRef]
  13. P. S. J. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38(8), 1599–1619 (1991).
    [CrossRef]
  14. P. S. J. Russel and T. A. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. Lightwave Technol. 17(11), 1982–1988 (1999).
    [CrossRef]
  15. E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
    [CrossRef]
  16. K. Ren and X. Ren, “Controlling light transport by using a graded photonic crystal,” Appl. Opt. 50(15), 2152–2157 (2011).
    [CrossRef] [PubMed]
  17. E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
    [CrossRef]
  18. E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29(13), 1937–1943 (2011).
    [CrossRef]
  19. areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
    [CrossRef]
  20. Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036612 (2004).
    [CrossRef] [PubMed]
  21. E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. 30(17), 2278–2280 (2005).
    [CrossRef] [PubMed]
  22. F. Grillot, L. Viv, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006).
    [CrossRef]
  23. E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron. 9(2), 460–464 (2003).
  24. L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
    [CrossRef]
  25. B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18(19), 20321–20333 (2010).
    [CrossRef] [PubMed]

2011 (3)

2010 (2)

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
[CrossRef]

B. Vasić, G. Isić, R. Gajić, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18(19), 20321–20333 (2010).
[CrossRef] [PubMed]

2009 (4)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[CrossRef]

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[CrossRef] [PubMed]

2008 (4)

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
[CrossRef]

A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

F. Grillot, L. Viv, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006).
[CrossRef]

2005 (1)

2004 (3)

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036612 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2003 (1)

E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron. 9(2), 460–464 (2003).

1999 (1)

1991 (1)

P. S. J. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38(8), 1599–1619 (1991).
[CrossRef]

Akmansoy, E.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
[CrossRef]

Albert, J.-P.

E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Birks, T. A.

Caer, C.

E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29(13), 1937–1943 (2011).
[CrossRef]

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Cassagne, D.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
[CrossRef]

E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. 30(17), 2278–2280 (2005).
[CrossRef] [PubMed]

Cassan, E.

E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29(13), 1937–1943 (2011).
[CrossRef]

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

F. Grillot, L. Viv, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006).
[CrossRef]

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron. 9(2), 460–464 (2003).

Centeno, E.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
[CrossRef]

E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

E. Centeno and D. Cassagne, “Graded photonic crystals,” Opt. Lett. 30(17), 2278–2280 (2005).
[CrossRef] [PubMed]

Cercus, J. L.

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

Chen, L.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
[CrossRef]

Cui, T. J.

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[CrossRef]

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

Ding, W.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
[CrossRef]

Do, K. V.

Do, V. K.

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

Fan, S.

Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036612 (2004).
[CrossRef] [PubMed]

Fédéli, J. M.

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Gajic, R.

Grillot, F.

Heitzmann, M.

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

Hingerl, K.

Isic, G.

Izard, N.

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

Jiao, Y.

Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036612 (2004).
[CrossRef] [PubMed]

Kildishev, A. V.

Koster, A.

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron. 9(2), 460–464 (2003).

Landy, N. I.

Lardenois, S.

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron. 9(2), 460–464 (2003).

Laval, S.

F. Grillot, L. Viv, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006).
[CrossRef]

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron. 9(2), 460–464 (2003).

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Liu, Y.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
[CrossRef]

Lourtioz, J. M.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
[CrossRef]

Marris-Morini, D.

E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29(13), 1937–1943 (2011).
[CrossRef]

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

Mei, Z. L.

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[CrossRef]

Miller, D. A. B.

Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036612 (2004).
[CrossRef] [PubMed]

Padilla, W. J.

Pascal, D.

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

Pendry, J. B.

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Rahm, M.

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

Ren, K.

Ren, X.

Roberts, D. A.

Roux, X. L.

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

Russel, P. S. J.

P. S. J. Russel and T. A. Birks, “Hamiltonian optics of nonuniform photonic crystals,” J. Lightwave Technol. 17(11), 1982–1988 (1999).
[CrossRef]

P. S. J. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38(8), 1599–1619 (1991).
[CrossRef]

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Smith, D. R.

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008).
[CrossRef] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Sun, X.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
[CrossRef]

Tang, D.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Vasic, B.

Viv, L.

Vivien, L.

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

E. Cassan, K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, “Short-wavelength light propagation in graded photonic crystals,” J. Lightwave Technol. 29(13), 1937–1943 (2011).
[CrossRef]

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

Vynck, K.

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Arbitrary waveguide bends using isotropic and homogeneous metamaterial,” Appl. Phys. Lett. 96(4), 041102 (2010).
[CrossRef]

E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, “Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92(13), 133501 (2008).
[CrossRef]

L. Vivien, S. Lardenois, D. Pascal, S. Laval, E. Cassan, J. L. Cercus, A. Koster, J. M. Fédéli, and M. Heitzmann, “Experimental demonstration of a low-loss optical H-tree distribution using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 85(5), 701–703 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

areV. K. Do, X. L. Roux, C. Caer, D. Marris-Morini, N. Izard, L. Vivien, and E. Cassan, “Wavelength demultiplexer based on a two-dimensional graded photonic crystal,” IEEE Photon. Technol. Lett. 23(15), 1094–1096 (2011).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE Sel. Top. Quantum Electron. 9(2), 460–464 (2003).

J. Appl. Phys. (1)

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[CrossRef]

J. Lightwave Technol. (3)

J. Mod. Opt. (1)

P. S. J. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38(8), 1599–1619 (1991).
[CrossRef]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73(23), 235119 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Jiao, S. Fan, and D. A. B. Miller, “Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036612 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[CrossRef] [PubMed]

Science (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Other (2)

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley and Sons, 2006), pp. 211–221.

Z. Saïd, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer-Verlag, 2008), pp. 3–10, Chap. 3, p. 106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic picture of (a) Graded Photonic Crystal (GPhC) structure located in a planar slab optical waveguide with two-dimensional chirp of the air hole filling factor, (b) Distribution of electric field in TE light polarization at normalized frequency a/λ = 0.25 inside the GPhC structure with input/output tapers.

Fig. 2
Fig. 2

(a) Photonic bandstructure (including band 1, band 2 and light line) of a square lattice photonic crystal made of air holes with r/a = 0.31 normalized radius (air hole size considered at the light incident point), (b) Overall transmission spectrum of the studied configuration calculated using FDTD simulation, and (c) Same data as in (b) but plotted as a function of wavelength, complemented by the transmission spectrum when I/O tapers are introduced to minimize optical insertion losses.

Fig. 3
Fig. 3

Scanning electron microscope images of (a), (b) overall view of studied GPhC configuration with input/output tapers; (c) modulation of electron dose used in e-beam lithographic step and some detailed views of local PhC at different locations of the GPhC ; and (d) titled view of input taper of the GPhC area at larger magnification

Fig. 4
Fig. 4

Scanning electron microscope images of (a) a two-channel wavelength demultiplexer and (b) its zoom at larger magnification.

Fig. 5
Fig. 5

Experimental overall transmission spectra of the studied GPhC configurations without input/output tapers (red line) and with input/output tapers (blue line), respectively.

Fig. 6
Fig. 6

Operation of two-channel demultiplexing based on GPhCs (a) channel 1: λ1 = 1552nm and channel 2: λ2 = 1616nm; (b) channel 1: λ1 = 1510nm and channel 2: λ2 = 1600nm; and (c) channel 1: λ1 = 1510nm and channel 2: λ2 = 1590nm.

Metrics