Abstract

We studied the spectral linewidth narrowing of wavelength-swept actively mode-locked ring lasers (AMLLs). The numerical calculations for the static-state AMLL led us to predict that anomalous dispersion would narrows the linewidth. We examined the effect experimentally using AMLL setups for normal and anomalous dispersive cavities via the normal or inverse use of a linearly chirped fiber Bragg grating. The experiment indicated that the cavity with anomalous dispersion always generates narrower linewidth lasers than its normal dispersion equivalent. The cavity with anomalous dispersion also achieved a 0.08 nm linewidth. Using the anomalous dispersion setup, we observed instantaneous linewidth broadening during wavelength sweeping. Although the coherence of AMLL decreased drastically when the sweep rate became very rapid beyond a single roundtrip, narrow-linewidth lasing was observed within a single roundtrip. In summary, we demonstrated the use of 150 kHz wavelength sweeping with a 40-nm range and a 2.7-m short-length anomalous dispersion cavity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  2. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  3. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  4. C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17(21), 18794–18807 (2009).
    [CrossRef] [PubMed]
  5. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE 7554, 75541F, 75541F-6 (2010).
    [CrossRef]
  6. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” in Conference on Lasers and Electro Optics, PDPD2, Baltimore, MD (May 2011).
  7. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  8. G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
    [CrossRef]
  9. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
    [CrossRef] [PubMed]
  10. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  11. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [CrossRef] [PubMed]
  12. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
    [CrossRef] [PubMed]
  13. S. Li and T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10(6), 799–801 (1998).
    [CrossRef]
  14. B. Burgoyne and A. Villeneuve, “Programmable laser: design and applications,” Proc. SPIE 7580, 758002 (2010).
    [CrossRef]
  15. S. Yamashita and Y. Takubo, “Fast wavelength-swept dispersion-tuned laser over 500kHz using a wideband chirped fiber Bragg grating,” Proc. SPIE 7753, 77537W (2010).
  16. H. Don Lee, J. H. Lee, M. Y. Jeong, and C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011).
    [CrossRef] [PubMed]
  17. A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
    [CrossRef]
  18. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [CrossRef]
  19. P. P. Baveja, D. N. Maywar, A. M. Kaplan, and F. P. Agrawal, “Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission,” IEEE J. Quantum Electron. 46(9), 1396–1403 (2010).
    [CrossRef]
  20. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]

2011 (2)

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
[CrossRef]

H. Don Lee, J. H. Lee, M. Y. Jeong, and C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011).
[CrossRef] [PubMed]

2010 (6)

P. P. Baveja, D. N. Maywar, A. M. Kaplan, and F. P. Agrawal, “Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission,” IEEE J. Quantum Electron. 46(9), 1396–1403 (2010).
[CrossRef]

B. Burgoyne and A. Villeneuve, “Programmable laser: design and applications,” Proc. SPIE 7580, 758002 (2010).
[CrossRef]

S. Yamashita and Y. Takubo, “Fast wavelength-swept dispersion-tuned laser over 500kHz using a wideband chirped fiber Bragg grating,” Proc. SPIE 7753, 77537W (2010).

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE 7554, 75541F, 75541F-6 (2010).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

2003 (1)

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

1998 (1)

S. Li and T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10(6), 799–801 (1998).
[CrossRef]

1997 (1)

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Adler, D. C.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Agrawal, F. P.

P. P. Baveja, D. N. Maywar, A. M. Kaplan, and F. P. Agrawal, “Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission,” IEEE J. Quantum Electron. 46(9), 1396–1403 (2010).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Akiba, M.

Atia, W.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE 7554, 75541F, 75541F-6 (2010).
[CrossRef]

Barry, S.

Baumann, B.

Baveja, P. P.

P. P. Baveja, D. N. Maywar, A. M. Kaplan, and F. P. Agrawal, “Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission,” IEEE J. Quantum Electron. 46(9), 1396–1403 (2010).
[CrossRef]

Bergonzo, A.

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

Biedermann, B. R.

Brenot, R.

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

Burgoyne, B.

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
[CrossRef]

B. Burgoyne and A. Villeneuve, “Programmable laser: design and applications,” Proc. SPIE 7580, 758002 (2010).
[CrossRef]

Cable, A. E.

Chan, T.

S. Li and T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10(6), 799–801 (1998).
[CrossRef]

Chen, Y.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Chinn, S. R.

Don Lee, H.

Duan, G. H.

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

Duker, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Durrand, O.

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

Eigenwillig, C. M.

Flanders, D.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE 7554, 75541F, 75541F-6 (2010).
[CrossRef]

Fujimoto, J.

Fujimoto, J. G.

Gohin, E.

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Hong, Y.

Hsu, K.

Huang, D.

Huber, R.

Jacquet, J.

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

Jeong, M. Y.

Johnson, B.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE 7554, 75541F, 75541F-6 (2010).
[CrossRef]

Kaplan, A. M.

P. P. Baveja, D. N. Maywar, A. M. Kaplan, and F. P. Agrawal, “Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission,” IEEE J. Quantum Electron. 46(9), 1396–1403 (2010).
[CrossRef]

Kim, C. S.

Kim, Y.

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
[CrossRef]

Klein, T.

Kuznetsov, M.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE 7554, 75541F, 75541F-6 (2010).
[CrossRef]

Lamouche, G.

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
[CrossRef]

Landreau, J.

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

Lee, J. H.

Li, S.

S. Li and T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10(6), 799–801 (1998).
[CrossRef]

Makita, S.

Maywar, D. N.

P. P. Baveja, D. N. Maywar, A. M. Kaplan, and F. P. Agrawal, “Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission,” IEEE J. Quantum Electron. 46(9), 1396–1403 (2010).
[CrossRef]

Miura, M.

Nakazaki, Y.

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Palte, G.

Potsaid, B.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Swanson, E. A.

Taira, K.

Takubo, Y.

S. Yamashita and Y. Takubo, “Fast wavelength-swept dispersion-tuned laser over 500kHz using a wideband chirped fiber Bragg grating,” Proc. SPIE 7753, 77537W (2010).

Vergnole, S.

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
[CrossRef]

Villeneuve, A.

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
[CrossRef]

B. Burgoyne and A. Villeneuve, “Programmable laser: design and applications,” Proc. SPIE 7580, 758002 (2010).
[CrossRef]

Wieser, W.

Wojtkowski, M.

Yamanari, M.

Yamashita, S.

S. Yamashita and Y. Takubo, “Fast wavelength-swept dispersion-tuned laser over 500kHz using a wideband chirped fiber Bragg grating,” Proc. SPIE 7753, 77537W (2010).

Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

IEEE J. Quantum Electron. (2)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

P. P. Baveja, D. N. Maywar, A. M. Kaplan, and F. P. Agrawal, “Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission,” IEEE J. Quantum Electron. 46(9), 1396–1403 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bergonzo, E. Gohin, J. Landreau, O. Durrand, R. Brenot, G. H. Duan, and J. Jacquet, “Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1118–1123 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Li and T. Chan, “Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 10(6), 799–801 (1998).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008).
[CrossRef] [PubMed]

Opt. Express (9)

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[CrossRef] [PubMed]

Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17(21), 18794–18807 (2009).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

H. Don Lee, J. H. Lee, M. Y. Jeong, and C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (4)

B. Burgoyne and A. Villeneuve, “Programmable laser: design and applications,” Proc. SPIE 7580, 758002 (2010).
[CrossRef]

S. Yamashita and Y. Takubo, “Fast wavelength-swept dispersion-tuned laser over 500kHz using a wideband chirped fiber Bragg grating,” Proc. SPIE 7753, 77537W (2010).

G. Lamouche, S. Vergnole, Y. Kim, B. Burgoyne, and A. Villeneuve, “Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser,” Proc. SPIE 7889, 78891L, 78891L-6 (2011).
[CrossRef]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE 7554, 75541F, 75541F-6 (2010).
[CrossRef]

Other (1)

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” in Conference on Lasers and Electro Optics, PDPD2, Baltimore, MD (May 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of an actively mode-locked laser (AMLL).

Fig. 2
Fig. 2

Calculated spectra of the AMLLs with normal and anormalous despersions. (a) I = 50 mA, TLoss = 0.075 (b) I = 100 mA, TLoss = 0.005.

Fig. 3
Fig. 3

Experimental setup of the AMLL.

Fig. 4
Fig. 4

Measured spectra of the AMLL modulated with different static frequencies. The LCFBG generated (a) normal dispersion or (b) anomalous dispersion.

Fig. 5
Fig. 5

Measured static (black) and calculated (red) spectra with the anomalous dispersion configuration.

Fig. 6
Fig. 6

Peak-hold mode spectra of the AMLL laser for different sweep rates.

Fig. 7
Fig. 7

Axial point spread functions (PSF) at 1 mm in depth for different sweep rates.

Fig. 8
Fig. 8

PSFs at several depth positions (solid lines), average values of MZI signals (dashed lines), and absolute values of static-state interference signals. The sweep rates are (a) 20 kHz, (b) 120 kHz, (c) 150 kHz, and (d) 200 kHz.

Tables (1)

Tables Icon

Table 1 SOA Parametersa and Calculation Conditions

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

f( λ )= mc n g [ L C +2 L f (λ)] ,
L f = ( λ high λ) | C FBG | , (normal dispersion) L f = (λ λ low ) | C FBG | , (anomalous dispersion)
λ high λ= L C C FBG 2f( λ high ) [ f( λ high )f(λ) ],
λ λ low = L C C FBG 2f( λ low ) [ f(λ)f( λ low ) ].
Δ λ sr < c 2 n g C FBG f .
A z + 1 v g A t = g 2 ( 1iα )A,
dP dz =g(z,τ)P,
dϕ dz = α 2 g(z,τ),
P out ( τ )= P in exp[ 0 L g( z,τ )dz ]= P in exp[ h( τ ) ].
ϕ nl (τ)= α 2 h(τ).
h t = g 0 L τ c h τ eff P in (τ) E sat ( e h 1 ).
g 0 =Γa N 0 ( I/ I 0 1 ),
1 τ c = A nr + B sp N+ C a N 2 ,
1 τ eff = A nr + B sp N+( C a + D sp ) N 2 ,
I qV =N( A nr + B sp N+ C a N 2 ).
M(τ)= T Loss exp[ ( δ m τ ) 4 ],
A in (τ)= F 1 [ exp[ i 2 ( ω ω 0 ) 2 λ 0 2 2πc Dl ]F[ A ( τ ) n ] ].
A in (τ)= P in (τ) exp[ i ϕ in (τ) ].
A out (τ)= P in (τ)exp[ h(τ) ] exp[ i ϕ in (τ)+i ϕ nl (τ) ].
A n (τ)=M(τ) A out (τ).
T= f f Δλ fsΔ λ T ,

Metrics