Abstract

Large-scale and cost-effective manufacturing of ceramic micro devices based on tape stacking requires the development of inspection systems to perform high-resolution in-process quality control of embedded manufactured cavities, metal structures and defects. With an optical coherence tomography (OCT) system operating at 1.3 μm and a dedicated automated line segmentation algorithm, layer thicknesses can be measured and laser-machined channels can be verified in alumina ceramics embedded at around 100 μm depth. Monte Carlo simulations are employed to analyze the abilities of OCT in imaging of the embedded channels. The light scattering parameters required as input data for simulations are evaluated from the integrating sphere measurements of collimated and diffuse transmittance spectra using a reconstruction algorithm based on refined diffusion approximation approach.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bredeau and L. Federzoni, “Multilayer: a large scale production of micro devices via new rolled multi material layered 3D shaping technology,” in Proceedings of the 4M/ICOMM 2009 Conference, V. Saile, K.Ehmann and S. Dimov, ed. (Karlsruhe, 2009), 419–422.
  2. A. S. Birks and R. E. Green, Ultrasonic Testing 2nd ed (Columbus, 1991).
  3. P. Zinin and W. Weise, “Theory and applications of acoustic microscopy”, in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, T. Kundu, ed. (CRC Press, Boca Raton, 2003)
  4. N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).
  5. S. R. Stock, MicroComputed Tomography: Methodology and Applications (CRC Press, 2008).
  6. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, 2002).
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  8. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [CrossRef] [PubMed]
  9. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
    [CrossRef] [PubMed]
  10. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [CrossRef]
  11. M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
    [CrossRef]
  12. M. Bashkansky, M. D. Duncan, M. Kahn, D. Lewis III, and J. Reintjes, “Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography,” Opt. Lett. 22(1), 61–63 (1997).
    [CrossRef] [PubMed]
  13. M. D. Duncan, M. Bashkansky, and J. Reintjes, “Subsurface defect detection in materials using optical coherence tomography,” Opt. Express 2(13), 540–545 (1998).
    [CrossRef] [PubMed]
  14. M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT Int. 34(8), 547–555 (2001).
    [CrossRef]
  15. J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).
  16. J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun. 168(1-4), 237–250 (1999).
    [CrossRef]
  17. J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45(1), 216–220 (1974).
    [CrossRef]
  18. R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
    [CrossRef]
  19. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [CrossRef]
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
  21. C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
    [CrossRef]
  22. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [CrossRef]
  23. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
    [CrossRef] [PubMed]
  24. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  25. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [CrossRef] [PubMed]
  26. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Express 18(21), 21714–21724 (2010).
    [CrossRef] [PubMed]
  27. Swerea IVF, Mölndal (head office), P O Box 104, SE-431 22 Mölndal, Sweden.
  28. I. H. Malitson, F. V. Murphy, and W. S. Rodeny, “Refractive index of synthetic sapphire,” J. Opt. Soc. Am. 48, 72 (1958).
    [CrossRef]
  29. A. Ishimaru, Wave Propagation and Scattering in Random Media, vol.1 (Plenum Press, New York, 1978).
  30. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [CrossRef] [PubMed]
  31. L. S. Dolin and E. A. Sergeeva, “A model of irradiance distribution for a directed point source in an infinite weakly absorbing turbid medium,” Radiophys. Quantum Electron. 44(11), 858–865 (2001).
    [CrossRef]
  32. R. C. Gonzalez and R. E. Woods, Digital Image Processing 3rd edition (Prentice Hall, 2008).
  33. A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30(1), 77–94 (1993).
    [CrossRef]
  34. C. Pecharromán, G. Mata-Osoro, L. A. Díaz, R. Torrecillas, and J. S. Moya, “On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres,” Opt. Express 17(8), 6899–6912 (2009).
    [CrossRef] [PubMed]
  35. R. Su and L. Mattsson, Depth profiling in alumina ceramic by optical coherence tomography,” in Proceedings of the 4M 2010 Conference, B Fillon, C. Khan-Malek, S.Dimov, ed., (Bourg en Bresse, 2010), 316–319.
  36. S. K. Kachigan, Statistical Analysis (Radius Press, 1986).
  37. L. Mattsson, V. Schulze, and J. Schneider, Ceramics Processing in Microtechnology (Whittles Publishing, 2009), Chap. 22.
  38. Thorlabs Sweden AB, Mölndalsvägen 3, 400 20 Gothenburg, Sweden.

2010 (2)

2009 (2)

C. Pecharromán, G. Mata-Osoro, L. A. Díaz, R. Torrecillas, and J. S. Moya, “On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres,” Opt. Express 17(8), 6899–6912 (2009).
[CrossRef] [PubMed]

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

2007 (4)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
[CrossRef]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).

2003 (2)

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002 (1)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

2001 (2)

L. S. Dolin and E. A. Sergeeva, “A model of irradiance distribution for a directed point source in an infinite weakly absorbing turbid medium,” Radiophys. Quantum Electron. 44(11), 858–865 (2001).
[CrossRef]

M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT Int. 34(8), 547–555 (2001).
[CrossRef]

1999 (2)

J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun. 168(1-4), 237–250 (1999).
[CrossRef]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

1998 (2)

M. D. Duncan, M. Bashkansky, and J. Reintjes, “Subsurface defect detection in materials using optical coherence tomography,” Opt. Express 2(13), 540–545 (1998).
[CrossRef] [PubMed]

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[CrossRef]

1997 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30(1), 77–94 (1993).
[CrossRef]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

1974 (1)

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45(1), 216–220 (1974).
[CrossRef]

1958 (1)

Alarousu, E.

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
[CrossRef]

And, M. I.

J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).

Apetz, R.

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

Bashkansky, M.

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[CrossRef]

Bilenca, A.

Bouma, B. E.

Brown, R. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Cambrey, A. D.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Caps, R.

J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun. 168(1-4), 237–250 (1999).
[CrossRef]

Chawla, N.

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Cockburn, J. W.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Colley, C. S.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Delpy, D. T.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Deng, X.

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

Desjardins, A. E.

Díaz, L. A.

Dolin, L. S.

L. S. Dolin and E. A. Sergeeva, “A model of irradiance distribution for a directed point source in an infinite weakly absorbing turbid medium,” Radiophys. Quantum Electron. 44(11), 858–865 (2001).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Dufour, M.

J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).

Duncan, M. D.

Fabritius, T.

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
[CrossRef]

Feng, T.-C.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[CrossRef]

Fricke, J.

J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun. 168(1-4), 237–250 (1999).
[CrossRef]

Haskell, R. C.

Hebden, J. C.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[CrossRef]

Hunter, L.

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Kahn, M.

Kirillin, M.

Kirillin, M. Yu.

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
[CrossRef]

Kuzmin, V.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Lau, S. H.

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

Lévesque, D.

J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).

Lewis, D.

M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT Int. 34(8), 547–555 (2001).
[CrossRef]

Lewis III, D.

Malitson, I. H.

Manara, J.

J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun. 168(1-4), 237–250 (1999).
[CrossRef]

Mata-Osoro, G.

McAdams, M. S.

McClimon, C.

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

Meglinski, I.

Metselaar, R.

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45(1), 216–220 (1974).
[CrossRef]

Moreau, C.

J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).

Moya, J. S.

Murphy, F. V.

Myllylä, R.

M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Express 18(21), 21714–21724 (2010).
[CrossRef] [PubMed]

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
[CrossRef]

Ng, W. H.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Ozcan, A.

Pecharromán, C.

Peelen, J. G. J.

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45(1), 216–220 (1974).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Priezzhev, A. V.

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
[CrossRef]

Pujari, V.

M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT Int. 34(8), 547–555 (2001).
[CrossRef]

Raether, F.

J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun. 168(1-4), 237–250 (1999).
[CrossRef]

Reintjes, J.

Rodeny, W. S.

Roos, A.

A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30(1), 77–94 (1993).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Sergeeva, E.

Sergeeva, E. A.

L. S. Dolin and E. A. Sergeeva, “A model of irradiance distribution for a directed point source in an infinite weakly absorbing turbid medium,” Radiophys. Quantum Electron. 44(11), 858–865 (2001).
[CrossRef]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

Svaasand, L. O.

Tearney, G. J.

Torrecillas, R.

Tromberg, B. J.

Tsay, T.-T.

van Bruggen, M. P. B.

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

Veilleux, J.

J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Wang, R. K.

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Williams, J. J.

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

Wilson, L. R.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Wojtkowski, M.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Yu, H. Y.

M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT Int. 34(8), 547–555 (2001).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Zibik, E. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Int. J. Powder Metall. (1)

N. Chawla, J. J. Williams, X. Deng, C. McClimon, L. Hunter, and S. H. Lau, “Three-dimensional characterization and modeling of porosity in powder metallurgical steels,” Int. J. Powder Metall. 45, 19–28 (2009).

J. Am. Ceram. Soc. (1)

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

J. Appl. Phys. (1)

J. G. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of alumina,” J. Appl. Phys. 45(1), 216–220 (1974).
[CrossRef]

J. Biomed. Opt. (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

J. Eur. Opt. Soc.- Rapid Publ. (1)

M. Yu. Kirillin, E. Alarousu, T. Fabritius, R. Myllylä, and A. V. Priezzhev, “Visualization of paper structure by optical coherence tomography: Monte Carlo simulations and experimental study”,J. Eur. Opt. Soc.- Rapid Publ. 2, 07031 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

NDT Int. (1)

M. Bashkansky, D. Lewis, V. Pujari, J. Reintjes, and H. Y. Yu, “Subsurface detection and characterization of Hertzian cracks in Si3N4 balls using optical coherence tomography,” NDT Int. 34(8), 547–555 (2001).
[CrossRef]

Opt. Commun. (2)

J. Manara, R. Caps, F. Raether, and J. Fricke, “Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared,” Opt. Commun. 168(1-4), 237–250 (1999).
[CrossRef]

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun. 154(4), 179–185 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Radiophys. Quantum Electron. (1)

L. S. Dolin and E. A. Sergeeva, “A model of irradiance distribution for a directed point source in an infinite weakly absorbing turbid medium,” Radiophys. Quantum Electron. 44(11), 858–865 (2001).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Rev. Quantitative Nondestruc. Eval. (1)

J. Veilleux, C. Moreau, D. Lévesque, M. Dufour, and M. I. And, “Boulos, “Optical coherence tomography for inspection of highly scattering ceramic media: glass powders and plasma-sprayed coatings,” Rev. Quantitative Nondestruc. Eval. 25, 1059–1066 (2006).

Rev. Sci. Instrum. (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

A. Roos, “Use of an integrating sphere in solar energy research,” Sol. Energy Mater. Sol. Cells 30(1), 77–94 (1993).
[CrossRef]

Other (13)

R. Su and L. Mattsson, Depth profiling in alumina ceramic by optical coherence tomography,” in Proceedings of the 4M 2010 Conference, B Fillon, C. Khan-Malek, S.Dimov, ed., (Bourg en Bresse, 2010), 316–319.

S. K. Kachigan, Statistical Analysis (Radius Press, 1986).

L. Mattsson, V. Schulze, and J. Schneider, Ceramics Processing in Microtechnology (Whittles Publishing, 2009), Chap. 22.

Thorlabs Sweden AB, Mölndalsvägen 3, 400 20 Gothenburg, Sweden.

A. Ishimaru, Wave Propagation and Scattering in Random Media, vol.1 (Plenum Press, New York, 1978).

R. C. Gonzalez and R. E. Woods, Digital Image Processing 3rd edition (Prentice Hall, 2008).

Swerea IVF, Mölndal (head office), P O Box 104, SE-431 22 Mölndal, Sweden.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).

S. R. Stock, MicroComputed Tomography: Methodology and Applications (CRC Press, 2008).

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, 2002).

S. Bredeau and L. Federzoni, “Multilayer: a large scale production of micro devices via new rolled multi material layered 3D shaping technology,” in Proceedings of the 4M/ICOMM 2009 Conference, V. Saile, K.Ehmann and S. Dimov, ed. (Karlsruhe, 2009), 419–422.

A. S. Birks and R. E. Green, Ultrasonic Testing 2nd ed (Columbus, 1991).

P. Zinin and W. Weise, “Theory and applications of acoustic microscopy”, in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, T. Kundu, ed. (CRC Press, Boca Raton, 2003)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

SEM image of the prepared cross-section of sample MLA100.

Fig. 2
Fig. 2

Real (n) and imaginary (k) part of the refractive index of alumina

Fig. 3
Fig. 3

Schematic of the sub-pixel precision estimation algorithm. The hair cross is the estimated sub-pixel location of the candidate pixel in the middle. An individual neighbour’s opinion must be inside the large circle to be accepted.

Fig. 4
Fig. 4

Total and diffuse transmittance and total reflectance of the sintered alumina sample

Fig. 5
Fig. 5

Scattering coefficients of sintered alumina calculated by the Mie scattering model using porosity and pore size estimations (filled dots), and by the light diffusion model using measured spectra of collimated and diffuse transmittance (line).

Fig. 6
Fig. 6

Anisotropy factor g of sintered alumina calculated by the Mie scattering model using porosity and pore size estimations (filled dots), and by the light diffusion model using measured spectra of collimated and diffuse transmittance (line).

Fig. 7
Fig. 7

Cross-sectional OCT image of the stacked and sintered alumina layers MLA100, ~100 μm geometrical thickness, and SAL1 with its laser machined channel. Note that the air filled space and channel is imaged with its geometrical size while the upper layer MLA100 is expanded in height by the average refractive index of the alumina at λ = 1.3 μm. The vertical 150 μm scale mark is therefore valid in the air gap only.

Fig. 8
Fig. 8

Filtered OCT cross-sectional image with its intensity profile (left) and the pixel map generated from the filtered image (right).

Fig. 9
Fig. 9

Post processing of measured OCT image. The three maximum scattering peaks represented as line segments.

Fig. 10
Fig. 10

Comparison between experimental and simulated A-scans (experimental A-scan is averaged over 200 realizations, for simulated A-scan surface rms roughness of 90 nm is used).

Fig. 11
Fig. 11

Simulated cross-sectional OCT images of the stacked alumina layers with embedded microchannel for different rms roughness of the surface: (a) 140 nm, (b) 90 nm, (c) 60 nm, (d) 30 nm.

Fig. 12
Fig. 12

Post processing of simulated OCT image (rms roughness of 90 nm is used).

Tables (4)

Tables Icon

Table 1 Specification of Thorlabs 1325nm swept-source OCT [38]

Tables Icon

Table 2 Dimensional measurements at different depths and uncertainty analysis

Tables Icon

Table 3 Optical properties of alumina and OCT setup parameters used in MC simulation

Tables Icon

Table 4 Optical properties of alumina and OCT setup parameters used in MC simulation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n= (1+ 1.023798× λ 2 λ 2 -0.00377588 + 1.058264× λ 2 λ 2 +0.0122544 + 5.280792× λ 2 λ 2 -321.3616 ) 1/2
T d = T F [ T F exp( μ s 'l)+ 2m+3 3 μ s 'l+4m +( 2m3 3 μ s 'l+4m 1 )exp( μ s 'l) ],
R d = R F [ 1+ T F 2 exp(2 μ s 'l) ]+ T F 2 [ 1 2m+3+(2m3)exp( μ s 'l) 3 μ s 'l+4m ].
m= 1+3 0 π/2 R F (θ,n) cos 2 θsinθdθ 12 0 π/2 R F (θ,n)cosθsinθdθ .
T c = T F 2 exp( μ s l).

Metrics