Abstract

This paper investigates the performance of our recently proposed LED lamp arrangement to reduce the SNR fluctuation from different locations in the room for multi-user visible light communications. The LED lamp arrangement consists of 4 LED lamps positioned in the corners and 12 LED lamps spread evenly on a circle. Our studies show that the SNR fluctuation under such a LED lamp arrangement is reduced from 14.5 dB to 0.9 dB, which guarantees that users can obtain almost identical communication quality, regardless of their locations. After time domain zero-forcing (ZF) equalization, the BER performances and channel capacities of 100-Mbit/s and 200-Mbit/s bipolar on-off-keying (OOK) signal with most significant inter-symbol interference (ISI) are very close to that of the channel without any ISI caused by this LED lamp arrangement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hann, J.-H. Kim, S.-Y. Jung, and C.-S. Park, “White LED ceiling lights positioning systems for optical wireless indoor applications,” Proc. ECOC, 1–3 (2010).
  2. H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” Proc. VTC, 2185–2189 (2007).
  3. O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
    [CrossRef]
  4. K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).
  5. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [CrossRef]
  6. L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of data rate by using equalization in an indoor visible light communication system,” in International Conference on Circuits and Systems for Communications, 678–682 (2008).
  7. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [CrossRef]
  8. M. Zhang, Y. Zhang, X. Yuan, and J. Zhang, “Mathematic models for a ray tracing method and its applications in wireless optical communications,” Opt. Express 18(17), 18431–18437 (2010).
    [CrossRef] [PubMed]
  9. Z. Wang, C. Yu, W-D. Zhong, and J. Chen, “A novel LED arrangement to reduce SNR fluctuation for multi-user in visible light communication systems,” accepted by International Conference on Information, Communication and Signal Processing, (2011).
  10. J. Proakis, Digital Communications (McGraw-Hill, 2008).
  11. A. Goldsmith, Wireless Communications (Cambridge University, 2005).
  12. I. Neokosmidis, T. Kamalakis, J. Walewski, B. Inan, and T. Sphicopoulos, “Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach,” J. Lightwave Technol. 27(22), 4970–4978 (2009).
    [CrossRef]
  13. http://en.wikipedia.org/wiki/Lumen_(unit)
  14. http://en.wikipedia.org/wiki/Illuminance
  15. R. Essiambre, G. Kramer, P. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]

2011

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

2010

M. Zhang, Y. Zhang, X. Yuan, and J. Zhang, “Mathematic models for a ray tracing method and its applications in wireless optical communications,” Opt. Express 18(17), 18431–18437 (2010).
[CrossRef] [PubMed]

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

R. Essiambre, G. Kramer, P. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[CrossRef]

2009

2004

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

1997

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

Bouchet, O.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Essiambre, R.

Fernandez, L.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Foschini, G.

Goebel, B.

Grobe, L.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Gueutier, E.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Habe, K.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

Inan, B.

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

Kamalakis, T.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

I. Neokosmidis, T. Kamalakis, J. Walewski, B. Inan, and T. Sphicopoulos, “Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach,” J. Lightwave Technol. 27(22), 4970–4978 (2009).
[CrossRef]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

Kottke, C.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

Kramer, G.

Langer, K.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Markov, V.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

Neokosmidis, I.

Nerreter, S.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Ntogari, G.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Paraskevopoulos, A.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

Porcon, P.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Sphicopoulos, T.

Vucic, J.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Walewski, J.

Walewski, J. W.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Wendl, M.

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

Winzer, P.

Wolf, M.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

Yuan, X.

Zhang, J.

Zhang, M.

Zhang, Y.

GLOBECOM Workshops

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” GLOBECOM Workshops, 1042–1046 (2010).
[CrossRef]

IEEE Trans. Consum. Electron.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Proc. IEEE

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[CrossRef]

Other

http://en.wikipedia.org/wiki/Lumen_(unit)

http://en.wikipedia.org/wiki/Illuminance

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of data rate by using equalization in an indoor visible light communication system,” in International Conference on Circuits and Systems for Communications, 678–682 (2008).

Z. Wang, C. Yu, W-D. Zhong, and J. Chen, “A novel LED arrangement to reduce SNR fluctuation for multi-user in visible light communication systems,” accepted by International Conference on Information, Communication and Signal Processing, (2011).

J. Proakis, Digital Communications (McGraw-Hill, 2008).

A. Goldsmith, Wireless Communications (Cambridge University, 2005).

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,”in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

S. Hann, J.-H. Kim, S.-Y. Jung, and C.-S. Park, “White LED ceiling lights positioning systems for optical wireless indoor applications,” Proc. ECOC, 1–3 (2010).

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” Proc. VTC, 2185–2189 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SNR distribution with 2-W total power: (a) 16 centered-LED lamps, (b) 16 circled-LED lamps.

Fig. 2
Fig. 2

Arrangement of 12 LED lamps spread evenly on a circle and 4 LED lamps positioned in the corners: (a) LED lamps and 100 receiver locations, (b) SNR distribution with 2-W total power.

Fig. 3
Fig. 3

Maximum difference of light arrival time from LED sources to receiver, without considering reflections: (a) The arrangement of 4 cornered-LEDs and 12 circle-LEDs, (b) 16 LEDs located in the center of the ceiling.

Fig. 4
Fig. 4

100-Mbit/s bipolar OOK signal: (a) one pulse shape of received bit ‘1’ with ISI, when the total LED power is 2 W, (b) BER performances with and without ZF equalization.

Fig. 5
Fig. 5

200-Mbit/s bipolar OOK signal: (a) one pulse shape of received bit ‘1’ with ISI, when the total LED power is 2 W, (b) BER performances with and without ZF equalization.

Fig. 6
Fig. 6

Channel capacity of visible light communication under the LED arrangement in Fig. 2: (a) 100-Mbit/s bipolar OOK signal, (b) 200-Mbit/s bipolar OOK signal.

Tables (3)

Tables Icon

Table 1 Parameters of VLC system configuration

Tables Icon

Table 2 SNRs and Q-factors of SNR distribution under LED arrangements of 12 circled-LEDs and 4 cornered-LEDs with different radii, where the distance between cornered-LED and their nearest walls is 0.1 m

Tables Icon

Table 3 SNRs and Q-factors of SNR distribution under LED arrangements of 12 circled-LEDs and 4 cornered-LEDs with different distances between the cornered-LEDs and their nearest walls, where the radius of LED-circle is 2.2 m

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

R(φ)= (m+1) cos m (φ) 2π ,
H(0)= R(φ)cos(θ)A d 2 = (m+1) cos m (φ)Acos(θ) 2π d 2 ,
P r =H(0) P t .
SNR= s (t) 2 ¯ P noise = (RH(0) P t M I ) 2 f (t) 2 ¯ P noise ,
Q SNR = SNR ¯ 2 var(SNR) ,
minvar( P r )=minE[ ( P r,j E( P r,j )) 2 ],
P r,j = P t,corner H (0) corner + P t,circle H (0) circle .
y m = I m + i=1 k a i I mi +n,
P(e| I m = E b )= P( I m 1 , .... , I m k )P(e| I m = E b , I m 1 , .... , I m k ) ,
P(e| I m = E b , I m 1 = I m 2 = .... = I m k = E b ) =P( y m <0| I m = I m1 = I m2 =.... = E b ) =P( y m = E b ( 1+ i=1 k a i )+n<0) =P( n<(1+ i=1 k a i ) E b ) =Q( (1+ i=1 k a i ) 2 E b / N 0 ),
P( e ) =P( I m = E b )P( e| I m = E b )+P( I m = E b )P( e| I m = E b ) =P( e| I m = E b ) = P( I m 1 , .... , I m k )P(e| I m = E b , I m 1 , .... , I m k ) .
q n = m= c m h nm ={ 1 ( n=0 ) 0 ( n0 ) .
C= max P X ( ) I( X;Y ) = max P X ( ) xX P X ( x ) f Y|X ( y|x ) log 2 f Y|X ( y|x ) f Y ( y ) dy ,
{ f Y|X ( y|x=1 )= 1 2π σ N exp( ( y+1 ) 2 2 σ N 2 ) f Y|X ( y|x=+1 )= 1 2π σ N exp( ( y1 ) 2 2 σ N 2 )
f Y|X ( y m | x m ) = p( x m 1 , .... , x m k ) f Y|X ( y m | x m , x m 1 , .... , x m k ) = p( x m 1 , .... , x m k ) 2π σ N exp( ( y[ x m , x m 1 , .... , x m k ] [ 1, a 1 , ... , a k ] ' ) 2 2 σ N 2 ) ,

Metrics