Abstract

We report on the nonlinear optical properties of Au-Ag nanoplanets produced by ion implantation and irradiation in silica, experimentally investigated by means of the single beam z-scan technique. The measurements provided experimental evidence of the intense local-field enhancement effect theoretically demonstrated for these plasmonic nanosystems. In particular, this has a dramatic impact on their nonlinear absorption behavior and results in a tunable changeover from reverse saturable absorption to saturable absorption by slightly varying the pump intensity and in the possibility to activate and observe nonlinear phenomena of the electron dynamics otherwise unaccessible in the intensity range that can be employed to study these materials. Finally, for the nanoplanet configuration we found a dramatic decrease of the intensity-dependent absorption coefficient, which could be very promising for obtaining optical gain materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [CrossRef]
  2. S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209 (2006).
    [CrossRef] [PubMed]
  3. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [CrossRef] [PubMed]
  4. P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
    [CrossRef]
  5. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef] [PubMed]
  6. G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
    [CrossRef]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  8. G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” in Materials Science with Ion Beams, H. Bernas, ed. (Springer-Verlag, BerlinHeidelberg, 2010), pp. 287–316.
  9. A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).
  10. R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
    [CrossRef]
  11. Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B 79, 045410 (2009).
    [CrossRef]
  12. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, BerlinHeidelberg, 1995).
  13. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
    [CrossRef]
  14. E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
    [CrossRef]
  15. O. Plaksin, Y. Takeda, H. Amekura, and N. Kishimoto, “Radiation-induced differential optical absorption of metal nanoparticles,” Appl. Phys. Lett. 88, 201915 (2006).
  16. M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
    [CrossRef]
  17. E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett. 86, 99 (2001).
    [CrossRef] [PubMed]
  18. P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
    [CrossRef]
  19. R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
    [CrossRef]
  20. P. Mazzoldi and G. Mattei, “Synthesis of metal nanclusters by using ion implantation,” in Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size-Control, B. Corain, G. Schmid, and N. Toshima, eds. (Elservier, Amsterdam, 2007), p. 281.
  21. G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
    [CrossRef] [PubMed]
  22. V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
    [CrossRef]
  23. G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
    [CrossRef]
  24. G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets,” Opt. Express 15, 10097–10102 (2007).
    [CrossRef] [PubMed]
  25. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  26. G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
    [CrossRef]
  27. R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
    [CrossRef]
  28. S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
    [CrossRef]
  29. B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
    [CrossRef]
  30. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
    [CrossRef]
  31. U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
    [CrossRef]
  32. O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
    [CrossRef]
  33. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b) 241, R1–R4 (2004).
    [CrossRef]

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef] [PubMed]

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

2010 (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

2009 (1)

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B 79, 045410 (2009).
[CrossRef]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
[CrossRef]

2007 (5)

G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets,” Opt. Express 15, 10097–10102 (2007).
[CrossRef] [PubMed]

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

2006 (3)

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209 (2006).
[CrossRef] [PubMed]

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

2005 (2)

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

2004 (3)

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b) 241, R1–R4 (2004).
[CrossRef]

2003 (2)

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

2002 (1)

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

2001 (2)

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett. 86, 99 (2001).
[CrossRef] [PubMed]

2000 (1)

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Amekura, H.

O. Plaksin, Y. Takeda, H. Amekura, and N. Kishimoto, “Radiation-induced differential optical absorption of metal nanoparticles,” Appl. Phys. Lett. 88, 201915 (2006).

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Battaglin, G.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

Béa, H.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Bein, T.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Bello, V.

G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets,” Opt. Express 15, 10097–10102 (2007).
[CrossRef] [PubMed]

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

Belloni, J.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Bernas, H.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett. 86, 99 (2001).
[CrossRef] [PubMed]

G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” in Materials Science with Ion Beams, H. Bernas, ed. (Springer-Verlag, BerlinHeidelberg, 2010), pp. 287–316.

Blanchard, R.

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Brogl, S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Brooks, E.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

Bubb, D. M.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

Buso, D.

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

Calvelli, P.

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

Capasso, F.

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Cattaruzza, E.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

Chen, J.

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Cookson, D. J.

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

Creuzet, F.

E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett. 86, 99 (2001).
[CrossRef] [PubMed]

De Marchi, G.

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209 (2006).
[CrossRef] [PubMed]

Espiau de Lamaestre, R.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Eustis, S.

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209 (2006).
[CrossRef] [PubMed]

Fan, X.-Z.

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Fan, Y.

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Feldmann, J.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Fieres, B.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Foran, G. J.

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b) 241, R1–R4 (2004).
[CrossRef]

Gatzogiannis, E.

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Genevet, P.

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Gonella, F.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Gray, S. K.

M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Gu, B.

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Guglielmi, M.

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

Guillet, Y.

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B 79, 045410 (2009).
[CrossRef]

Guo, S.-L.

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Gurudas, U.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

Guyot-Sionnest, P.

M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef] [PubMed]

Hagan, D.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

He, J.

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Heiroth, S.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

Ji, W.

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Johannessen, B.

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

Kats, M. A.

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kishimoto, N.

O. Plaksin, Y. Takeda, H. Amekura, and N. Kishimoto, “Radiation-induced differential optical absorption of metal nanoparticles,” Appl. Phys. Lett. 88, 201915 (2006).

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
[CrossRef]

Klar, T. A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Kluth, P.

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

Kluth, S. M.

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, BerlinHeidelberg, 1995).

Kumar, G. R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[CrossRef]

Kürzinger, K.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Lee, T.

M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Lippert, T.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

Liu, M.

M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Marignier, J. L.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Martucci, A.

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

Mattei, G.

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets,” Opt. Express 15, 10097–10102 (2007).
[CrossRef] [PubMed]

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” in Materials Science with Ion Beams, H. Bernas, ed. (Springer-Verlag, BerlinHeidelberg, 2010), pp. 287–316.

P. Mazzoldi and G. Mattei, “Synthesis of metal nanclusters by using ion implantation,” in Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size-Control, B. Corain, G. Schmid, and N. Toshima, eds. (Elservier, Amsterdam, 2007), p. 281.

Maurizio, C.

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef] [PubMed]

Mazzoldi, P.

G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets,” Opt. Express 15, 10097–10102 (2007).
[CrossRef] [PubMed]

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

P. Mazzoldi and G. Mattei, “Synthesis of metal nanclusters by using ion implantation,” in Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size-Control, B. Corain, G. Schmid, and N. Toshima, eds. (Elservier, Amsterdam, 2007), p. 281.

G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” in Materials Science with Ion Beams, H. Bernas, ed. (Springer-Verlag, BerlinHeidelberg, 2010), pp. 287–316.

Ming, N.

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Nichtl, A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Palpant, B.

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B 79, 045410 (2009).
[CrossRef]

Park, I.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Parolin, M.

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

Pellegrini, G.

G. Pellegrini, V. Bello, G. Mattei, and P. Mazzoldi, “Local-field enhancement and plasmon tuning in bimetallic nanoplanets,” Opt. Express 15, 10097–10102 (2007).
[CrossRef] [PubMed]

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

Petkov, N.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Philip, R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[CrossRef]

Plaksin, O.

O. Plaksin, Y. Takeda, H. Amekura, and N. Kishimoto, “Radiation-induced differential optical absorption of metal nanoparticles,” Appl. Phys. Lett. 88, 201915 (2006).

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
[CrossRef]

Plaksin, S.

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
[CrossRef]

Polloni, R.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

Post, M.

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

Pradeep, T.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[CrossRef]

Raschke, G.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Rashidi-Huyeh, M.

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B 79, 045410 (2009).
[CrossRef]

Ricolleau, C.

E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett. 86, 99 (2001).
[CrossRef] [PubMed]

Ridgway, M. C.

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

Rogach, A. L.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b) 241, R1–R4 (2004).
[CrossRef]

Sada, C.

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

Said, A.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sandhyarani, N.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[CrossRef]

Scremin, B. F.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

Scully, M. O.

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Stepanov, A. L.

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b) 241, R1–R4 (2004).
[CrossRef]

Stryland, E. V.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Susha, A. S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Takeda, Y.

O. Plaksin, Y. Takeda, H. Amekura, and N. Kishimoto, “Radiation-induced differential optical absorption of metal nanoparticles,” Appl. Phys. Lett. 88, 201915 (2006).

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
[CrossRef]

Tetienne, J.

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b) 241, R1–R4 (2004).
[CrossRef]

Valentin, E.

E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett. 86, 99 (2001).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, BerlinHeidelberg, 1995).

Wang, H.

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Wang, H.-T.

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wokaun, A.

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

Xu, L.

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Yan, J.

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

G. Mattei, P. Mazzoldi, M. Post, D. Buso, M. Guglielmi, and A. Martucci, “Cookie-like Au/NiO nanoparticles with optical Gas-Sensing properties,” Adv. Mater. 19, 561–564 (2007).
[CrossRef]

Appl. Phys. B (1)

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

O. Plaksin, Y. Takeda, H. Amekura, and N. Kishimoto, “Radiation-induced differential optical absorption of metal nanoparticles,” Appl. Phys. Lett. 88, 201915 (2006).

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, “Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass,” Appl. Phys. Lett. 78, 3953–3955 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, “Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index,” Appl. Surf. Sci. 247, 390–395 (2005).
[CrossRef]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209 (2006).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys. (3)

B. Gu, Y. Fan, J. Chen, H. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104, 073107 (2008).
[CrossRef]

O. Plaksin, Y. Takeda, H. Amekura, N. Kishimoto, and S. Plaksin, “Saturation of nonlinear optical absorption of metal-nanoparticle composites,” J. Appl. Phys. 103, 114302 (2008).
[CrossRef]

J. Non-Cryst. Solids (1)

V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, “Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2,” J. Non-Cryst. Solids 345–346, 685–688 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S.-L. Guo, J. Yan, L. Xu, B. Gu, X.-Z. Fan, H.-T. Wang, and N. Ming, “Second z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A: Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Journal of Non-Crystalline Solids (1)

R. Polloni, B. F. Scremin, P. Calvelli, E. Cattaruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” Journal of Non-Crystalline Solids 322, 300–305 (2003).
[CrossRef]

Nano Lett. (2)

P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Nature (1)

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. in Phys. Res. B (1)

G. Mattei, V. Bello, P. Mazzoldi, G. Pellegrini, C. Sada, C. Maurizio, and G. Battaglin, “Modification of composition and structure of bimetallic nanocluster in silica by ion beam irradiation,” Nucl. Instrum. Meth. in Phys. Res. B 240, 128–132 (2005).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (5)

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters,” Phys. Rev. B 62, 13160 (2000).
[CrossRef]

Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B 79, 045410 (2009).
[CrossRef]

M. Liu, P. Guyot-Sionnest, T. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

P. Kluth, B. Johannessen, G. J. Foran, D. J. Cookson, S. M. Kluth, and M. C. Ridgway, “Disorder and cluster formation during ion irradiation of au nanoparticles in sio2,” Phys. Rev. B 74, 014202 (2006).
[CrossRef]

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

G. Mattei, G. De Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, “Chemical- or Radiation-Assisted selective dealloying in bimetallic nanoclusters,” Phys. Rev. Lett. 90, 085502 (2003).
[CrossRef] [PubMed]

E. Valentin, H. Bernas, C. Ricolleau, and F. Creuzet, “Ion beam “photography”: Decoupling nucleation and growth of metal clusters in glass,” Phys. Rev. Lett. 86, 99 (2001).
[CrossRef] [PubMed]

Phys. Status Solidi (b) (1)

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and reverse saturated absorption of Cu:SiO2 at λ = 532 nm,” Phys. Status Solidi (b) 241, R1–R4 (2004).
[CrossRef]

Rev. Adv. Mater. Sci. (1)

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

Other (3)

P. Mazzoldi and G. Mattei, “Synthesis of metal nanclusters by using ion implantation,” in Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size-Control, B. Corain, G. Schmid, and N. Toshima, eds. (Elservier, Amsterdam, 2007), p. 281.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, BerlinHeidelberg, 1995).

G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” in Materials Science with Ion Beams, H. Bernas, ed. (Springer-Verlag, BerlinHeidelberg, 2010), pp. 287–316.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical absorption spectra of the samples with (AuAg-NPL, continuous line) and without (AuAg, dot-dashed line) the nanoplanets. The vertical line indicates the z-scan excitation wavelength. The inset shows the corresponding TEM cross-sectional bright-field micrographs.

Fig. 2
Fig. 2

(a, b, c) open-aperture (OA) and (d, e, f) closed-aperture (CA) z-scan curves of sample AuAg-NPL, measured at 527 nm at the three indicated laser beam intensities (at the lens focus, I0). The solid lines represent the best fits according to Eqs. (6) and (1), respectively, following the approach described in the text. The different vertical scales are used to highlight the features visible at the different intensities.

Fig. 3
Fig. 3

(a, b, c) open-aperture (OA) and (d,e,f) closed-aperture (CA) z-scan curves of sample AuAg, measured at 527 nm at the three indicated laser beam intensities (at the lens focus, I0). The solid lines represent the best fits according to Eqs. (6) and (1), respectively, following the approach described in the text. The dashed lines in (a) and (c) represent the best fit and the simulation, respectively, obtained for an intensity-independent β = 1.1 × 10−4 cm/W (see the text for comments).

Fig. 4
Fig. 4

Evolution of the nonlinear absorption coefficient β (solid line) and of its components βRSA (dashed line) and βSA (dot-dashed line) plotted as continuous functions, obtained from the NLO data measured at 527 nm as a function of the laser intensity for AuAg-NPL sample (a) and for the AuAg sample (b).

Fig. 5
Fig. 5

Evolution of the normalized absorption coefficient α(I)/α0 measured at 527 nm as a function of the laser intensity for AuAg and the AuAg-NPL samples: dots represent experimental points from the z-scans in the whole intensity range and the lines are the functions computed with the measured values reported in Table 1

Tables (1)

Tables Icon

Table 1 Nonlinear optical parameters measured at 527 nm of the samples with (AuAg-NPL) and without (AuAg) the nanoplanets.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T = 1 + ( 1 S ) μ sin ξ S ( 1 + x 2 ) Δ Φ 0 1 ( 1 S ) μ cos ξ S ( 1 + x 2 ) Δ Ψ 0
μ = 2 ( x 2 + 3 ) ( x 2 + 9 )
ξ = 4 x ln ( 1 S ) ( x 2 + 9 )
Δ Φ 0 = 2 π λ n 2 I 0 L e
Δ Ψ 0 = β I 0 L e / 2 2
T OA = 1 β I 0 L e 2 2 ( 1 + x 2 )
β ( I ) = β RSA ( I ) + β S A ( I ) = β + 1 + I I s + + β 1 + I I s

Metrics