Abstract

Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs – a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Fujitsu Europe Press Release, Fujitsu launches second generation ultra-fast 65 GSa/s 8-Bit ADC technology for 100G optical transport. ( http://www.fujitsu.com/emea/news/pr/fseu-en_20100913-978.html ), September 13 (2010).
  2. Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S. Wang, “A 40 GS/s 6b ADC in 65 nm CMOS,” International Solid State Circuits Conference (ISSCC), paper 21.7 (2010).
  3. M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).
  4. R. Walden, “Analog-to-digital conversion in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.
  5. J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
    [CrossRef]
  6. H. A. Haus and A. Mecozzi, “Noise of mode-locked Lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
    [CrossRef]
  7. D. von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [CrossRef]
  8. D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(22), 1762–1764 (1991).
    [CrossRef] [PubMed]
  9. U. Keller, C. E. Soccolich, G. Sucha, M. N. Islam, and M. Wegener, “Noise characterization of femtosecond color-center lasers,” Opt. Lett. 15(17), 974–976 (1990).
    [CrossRef] [PubMed]
  10. D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron. 28(1), 289–296 (1992).
    [CrossRef]
  11. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers using balanced optical cross-correlation,” Opt. Lett. 32(24), 3519–3521 (2007).
    [CrossRef] [PubMed]
  12. J. A. Cox, A. H. Nejadmalayeri, J. W. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
    [CrossRef] [PubMed]
  13. A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Ultrashort laser pulses: optical flywheels with attosecond jitter,” Nat. Photonics (submitted to).
  14. H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
    [CrossRef]
  15. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
    [CrossRef] [PubMed]
  16. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306(5700), 1318–1324 (2004).
    [CrossRef] [PubMed]
  17. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [CrossRef]
  18. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  19. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [CrossRef]
  20. H. F. Taylor, M. J. Taylor, and P. W. Bauer, “Electro-optic analog-to-digital conversion using channel waveguide modulators,” Appl. Phys. Lett. 32(9), 559–561 (1978).
    [CrossRef]
  21. A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
    [CrossRef]
  22. J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
    [CrossRef]
  23. J. A. Valdmanis, “Real time picosecond optical oscilloscope,” Proc. 5th OSA Top. Meet. Ultrafast Phenomena V, 82–85 (1986).
  24. M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
    [CrossRef]
  25. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [CrossRef] [PubMed]
  26. J. A. Bell, M. C. Hamilton, D. A. Leep, T. D. Moran, H. F. Taylor, and Y. H. Lee, “Extension of electronic A/D converters to multi-gigahertz sampling rates using optical sampling and demultiplexing techniques,” 23rd Asilomar Conference on Signals, Systems and Computers, 289–293 (1989).
  27. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
    [CrossRef]
  28. R. C. Williamson, R. D. Younger, P. W. Juodawlkis, J. J.Hargreaves, J. C. Twichell, “Precision calibration of an optically sampled analog-to-digital converter,” 2003 Digest of the LEOS Summer Topical Meetings, MC4.2/22- MC4.2/23, 2003.
  29. A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1083 (1998).
    [CrossRef]
  30. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [CrossRef]
  31. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [CrossRef]
  32. G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightwave Technol. 28(10), 1468–1476 (2010).
    [CrossRef]
  33. S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008).
    [CrossRef] [PubMed]
  34. J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009).
    [CrossRef]
  35. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol. 21(12), 3116–3124 (2003).
    [CrossRef]
  36. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
    [CrossRef] [PubMed]
  37. M. Jarrahi, R. Pease, D. Miller, and T. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
    [CrossRef]
  38. J. Stigwall and S. Galt, “Demonstration and analysis of a 40-gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol. 24(3), 1247–1256 (2006).
    [CrossRef]
  39. K. Ikeda, J. M. Abdul, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Design considerations of all-optical A/D conversion: nonlinear fiber-optic Sagnac-loop interferometer-based optical quantizing and coding,” J. Lightwave Technol. 24(7), 2618–2628 (2006).
    [CrossRef]
  40. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [CrossRef] [PubMed]
  41. T. R. Clark, M. Currie, and P. J. Matthews, “Digitally linearized wide-band photonic link,” J. Lightwave Technol. 19(2), 172–179 (2001).
    [CrossRef]
  42. J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
    [CrossRef]
  43. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  44. S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008).
    [CrossRef] [PubMed]
  45. S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and optimization of silicon-diode-based optical modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
    [CrossRef]
  46. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [CrossRef]
  47. M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, and T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
    [CrossRef] [PubMed]
  48. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  49. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
    [CrossRef] [PubMed]
  50. C. H. Cox III, Analog Optical Link: Theory and Practice (Cambridge University Press, 2004).

2011 (1)

2010 (10)

G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightwave Technol. 28(10), 1468–1476 (2010).
[CrossRef]

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

J. A. Cox, A. H. Nejadmalayeri, J. W. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and optimization of silicon-diode-based optical modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

2009 (2)

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009).
[CrossRef]

2008 (4)

2007 (5)

2006 (2)

2004 (1)

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306(5700), 1318–1324 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

2001 (2)

T. R. Clark, M. Currie, and P. J. Matthews, “Digitally linearized wide-band photonic link,” J. Lightwave Technol. 19(2), 172–179 (2001).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

2000 (1)

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

1999 (1)

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[CrossRef]

1998 (2)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1083 (1998).
[CrossRef]

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[CrossRef]

1997 (1)

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked Lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

1992 (1)

D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron. 28(1), 289–296 (1992).
[CrossRef]

1991 (1)

1990 (1)

1986 (1)

D. von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

1978 (1)

H. F. Taylor, M. J. Taylor, and P. W. Bauer, “Electro-optic analog-to-digital conversion using channel waveguide modulators,” Appl. Phys. Lett. 32(9), 559–561 (1978).
[CrossRef]

Abdul, J. M.

Avino, S.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Bauer, P. W.

H. F. Taylor, M. J. Taylor, and P. W. Bauer, “Electro-optic analog-to-digital conversion using channel waveguide modulators,” Appl. Phys. Lett. 32(9), 559–561 (1978).
[CrossRef]

Benedick, A. J.

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Ultrashort laser pulses: optical flywheels with attosecond jitter,” Nat. Photonics (submitted to).

Bergquist, J. C.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306(5700), 1318–1324 (2004).
[CrossRef] [PubMed]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Bhushan, A. S.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1083 (1998).
[CrossRef]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Byun, H.

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Chen, J.

Chou, J.

Chu, M.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

Clark, T. R.

Conway, J.

Conway, J. A.

Coppinger, F.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1083 (1998).
[CrossRef]

Cox, J.

Cox, J. A.

Crust, D. W.

D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron. 28(1), 289–296 (1992).
[CrossRef]

Currie, M.

De Natale, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Diddams, S. A.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306(5700), 1318–1324 (2004).
[CrossRef] [PubMed]

Esman, R. D.

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[CrossRef]

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

Evans, J. M.

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Frankel, M. Y.

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

Frolov, S.

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

Fujimoto, J. G.

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Ultrashort laser pulses: optical flywheels with attosecond jitter,” Nat. Photonics (submitted to).

Gagliardi, G.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Galt, S.

Gan, F.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Geis, M. W.

Grein, M. E.

Gupta, S.

Han, Y.

Hanjani, A.

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

Hargreaves, J. J.

P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol. 21(12), 3116–3124 (2003).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Haus, H. A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked Lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Helkey, R.

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

Ikeda, K.

Inoue, T.

Ippen, E. P.

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and optimization of silicon-diode-based optical modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

S. J. Spector, M. W. Geis, G. R. Zhou, M. E. Grein, F. Gan, M. A. Popovic, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16(15), 11027–11031 (2008).
[CrossRef] [PubMed]

Islam, M. N.

Jacob, P.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

Jalali, B.

Jarrahi, M.

M. Jarrahi, R. Pease, D. Miller, and T. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Jefferts, S. R.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306(5700), 1318–1324 (2004).
[CrossRef] [PubMed]

Juodawlkis, P. W.

P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol. 21(12), 3116–3124 (2003).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Käertner, F. X.

Kang, J. U.

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[CrossRef]

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

Kärtner, F. X.

A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
[CrossRef] [PubMed]

J. A. Cox, A. H. Nejadmalayeri, J. W. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
[CrossRef] [PubMed]

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
[CrossRef]

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and optimization of silicon-diode-based optical modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008).
[CrossRef] [PubMed]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers using balanced optical cross-correlation,” Opt. Lett. 32(24), 3519–3521 (2007).
[CrossRef] [PubMed]

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Ultrashort laser pulses: optical flywheels with attosecond jitter,” Nat. Photonics (submitted to).

Kärtner, F. Z.

Keller, U.

Khilo, A.

Kim, J.

Kim, J. W.

Kim, J.-W.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

Kim, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Kitayama, K.

Kolodziejski, L. A.

Koumans, R.

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[CrossRef]

Kraft, R. P.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, T.

M. Jarrahi, R. Pease, D. Miller, and T. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Lennon, D. M.

LeRoy, M. R.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Lyszczarz, T. M.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Matthews, P. J.

McDonald, J. F.

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked Lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

Miller, D.

M. Jarrahi, R. Pease, D. Miller, and T. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Motamedi, A.

Namiki, S.

Nejadmalayeri, A. H.

Oates, C. W.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306(5700), 1318–1324 (2004).
[CrossRef] [PubMed]

O'Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Palmacci, S. T.

Park, M. J.

Pease, R.

M. Jarrahi, R. Pease, D. Miller, and T. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

Perrott, M. H.

Petrich, G. S.

Popovic, M. A.

Pudo, D.

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Salza, M.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Sander, M. Y.

Schulein, R. J.

Sefler, G.

Sefler, G. A.

Shen, H.

Shmulovich, J.

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron. 28(1), 289–296 (1992).
[CrossRef]

D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(22), 1762–1764 (1991).
[CrossRef] [PubMed]

Sleat, W. E.

D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron. 28(1), 289–296 (1992).
[CrossRef]

D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(22), 1762–1764 (1991).
[CrossRef] [PubMed]

Soccolich, C. E.

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Sorace, C. M.

A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express 19(5), 4485–4500 (2011).
[CrossRef] [PubMed]

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and optimization of silicon-diode-based optical modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

Spector, S. J.

Spence, D. E.

Stigwall, J.

Sucha, G.

Taylor, H. F.

H. F. Taylor, M. J. Taylor, and P. W. Bauer, “Electro-optic analog-to-digital conversion using channel waveguide modulators,” Appl. Phys. Lett. 32(9), 559–561 (1978).
[CrossRef]

Taylor, M. J.

H. F. Taylor, M. J. Taylor, and P. W. Bauer, “Electro-optic analog-to-digital conversion using channel waveguide modulators,” Appl. Phys. Lett. 32(9), 559–561 (1978).
[CrossRef]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Titi, G. W.

Tobioka, H.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Twichell, J. C.

P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol. 21(12), 3116–3124 (2003).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

Valley, G.

Valley, G. C.

von der Linde, D.

D. von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Walker, D. R.

D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron. 28(1), 289–296 (1992).
[CrossRef]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Wegener, M.

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Wynn, C. M.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Yariv, A.

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[CrossRef]

Yoon, J. U.

Younger, R. D.

P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, “Optical down-sampling of wide-band microwave signals,” J. Lightwave Technol. 21(12), 3116–3124 (2003).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

Zhou, G. R.

Appl. Opt. (1)

Appl. Phys. B (1)

D. von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Appl. Phys. Lett. (2)

H. F. Taylor, M. J. Taylor, and P. W. Bauer, “Electro-optic analog-to-digital conversion using channel waveguide modulators,” Appl. Phys. Lett. 32(9), 559–561 (1978).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Electron. Lett. (5)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1083 (1998).
[CrossRef]

M. Y. Frankel, J. U. Kang, and R. D. Esman, “High performance photonics analogue digital converter,” Electron. Lett. 33(25), 2096–2097 (1997).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

A. Yariv and R. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998).
[CrossRef]

J. U. Kang and R. D. Esman, “Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter,” Electron. Lett. 35(1), 60–61 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus and A. Mecozzi, “Noise of mode-locked Lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

D. R. Walker, D. W. Crust, W. E. Sleat, and W. Sibbett, “Reduction of phase noise in passively mode-locked lasers,” IEEE J. Quantum Electron. 28(1), 289–296 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Operation and optimization of silicon-diode-based optical modulators,” IEEE J. Sel. Top. Quantum Electron. 16(1), 165–172 (2010).
[CrossRef]

IEEE J. Solid-State Circuits (1)

M. Chu, P. Jacob, J.-W. Kim, M. R. LeRoy, R. P. Kraft, and J. F. McDonald, “A 40 GS/s time interleaved ADC using SiGe BiCMOS technology,” IEEE J. Solid-State Circuits 45(2), 380–390 (2010).

IEEE Photon. Technol. Lett. (2)

H. Byun, A. Hanjani, S. Frolov, E. P. Ippen, D. Pudo, J. Shmulovich, and F. X. Kärtner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett. 21(12), 763–765 (2009).
[CrossRef]

J. C. Twichell and R. Helkey, “Phase-encoded optical sampling for analog-to-digital converters,” IEEE Photon. Technol. Lett. 12(9), 1237–1239 (2000).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

M. Jarrahi, R. Pease, D. Miller, and T. Lee, “Optical spatial quantization for higher performance analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[CrossRef]

J. Lightwave Technol. (7)

Laser Photon. Rev. (1)

J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
[CrossRef]

Nat. Photonics (5)

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Ultrashort laser pulses: optical flywheels with attosecond jitter,” Nat. Photonics (submitted to).

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Science (2)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306(5700), 1318–1324 (2004).
[CrossRef] [PubMed]

Other (7)

J. A. Valdmanis, “Real time picosecond optical oscilloscope,” Proc. 5th OSA Top. Meet. Ultrafast Phenomena V, 82–85 (1986).

R. Walden, “Analog-to-digital conversion in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering (Wiley, 2008), pp. 126–138.

Fujitsu Europe Press Release, Fujitsu launches second generation ultra-fast 65 GSa/s 8-Bit ADC technology for 100G optical transport. ( http://www.fujitsu.com/emea/news/pr/fseu-en_20100913-978.html ), September 13 (2010).

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S. Wang, “A 40 GS/s 6b ADC in 65 nm CMOS,” International Solid State Circuits Conference (ISSCC), paper 21.7 (2010).

C. H. Cox III, Analog Optical Link: Theory and Practice (Cambridge University Press, 2004).

R. C. Williamson, R. D. Younger, P. W. Juodawlkis, J. J.Hargreaves, J. C. Twichell, “Precision calibration of an optically sampled analog-to-digital converter,” 2003 Digest of the LEOS Summer Topical Meetings, MC4.2/22- MC4.2/23, 2003.

J. A. Bell, M. C. Hamilton, D. A. Leep, T. D. Moran, H. F. Taylor, and Y. H. Lee, “Extension of electronic A/D converters to multi-gigahertz sampling rates using optical sampling and demultiplexing techniques,” 23rd Asilomar Conference on Signals, Systems and Computers, 289–293 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

“Walden plot” showing ENOB of existing ADCs as a function of analog input frequency. Each point represents an ADC: blue circles correspond to the ADCs from Walden’s survey of ADCs as of late 2007 [4], and dark blue circles correspond to some high-performance ADCs that have been demonstrated since 2007. The dashed lines are locii of constant values of aperture jitter, as indicated next to the lines together with the year when this jitter value was achieved. Photonic ADCs, operating with very low timing jitter, are envisaged to bring ADC performance to new levels, as indicated by the arrow labeled ”Photonic ADCs”. Some high-performance wideband photonic ADC results are shown with orange stars, with the large star corresponding to the result of this work. Note that all photonic ADC results in this plot, including the result of this work, were obtained in the undersampling mode, i.e. when signals were sampled below their Nyquist rates. Details on data points used in this plot can be found in the Appendix.

Fig. 2
Fig. 2

Layout of the photonic ADC studied in this work. The components of the ADC inside the dashed box can ultimately be integrated on a single electronic-photonic chip. In this work, the silicon chip comprised the modulator, demultiplexers, and photodetectors, while all other components were implemented off-chip, as described later.

Fig. 3
Fig. 3

Data measured with two 1.05 GSa/s channels of the discrete-component photonic ADC. This ADC was used to digitize a 41 GHz RF signal. Fourier transforms of the data points recorded in individual channels are shown in (a), and Fourier transform of interleaved data is shown in (b). Since the sample rate per channel (precise value 1.048 GSa/s) was lower than the Nyquist rate for the test signal (precise frequency 40.99 GHz) signal, the signal was aliased to 118 MHz in (a) and 930 MHz in (b). The signal at fundamental frequency is labeled as “fundamental”, second and third harmonic distortions are labeled as “HD2” and “HD3”, and interleaving spurs are labeled as “interl. HD2” and “interl. HD3”. 4096 data points were captured in each channel; a Blackman window was applied to improve the dynamic range.

Fig. 4
Fig. 4

A vision of a fully integrated electronic-photonic ADC. The chip would include both photonic and electronic components, i.e. a dual-output silicon modulator, two matched banks of microring-resonator filters, balanced photoreceivers, electronic ADCs, and digital post-processing circuits. The generation of the wavelength-interleaved pulse train (not shown in the figure) could also be integrated on the same chip. For simplicity, only 3 wavelength channels are shown; channel count can be significantly higher, as explained later. The silicon chip presented in this work is a first step toward full integration and includes the core photonic components of the ADC (the modulator, filter banks, and photodetectors).

Fig. 5
Fig. 5

(a) Photograph of the packaged silicon photonic chip which enables a photonic ADC with three wavelength channels. The chip includes a Mach-Zehnder silicon modulator, two matched three-channel microring-resonator filter banks, silicon photodetectors, and fiber-to-chip couplers. The packaging provides access to 8 RF photodiode outputs (each of the two filter banks has 4 outputs: 3 outputs for 3 wavelength channels and 1 output for off-resonance light, which passes through unaffected by the filters and is used for testing purposes). The package also has DC contacts for microheaters for the filters and MZ modulator. The wavelength-interleaved pulse train generator and all electronic components of the ADC system are implemented off-chip. (b) Top-view photograph of this photonic chip with metal heaters, wiring, and contact pads fabricated on top of the overcladding on the silicon layer.

Fig. 6
Fig. 6

Data measured with two 1.05 GSa/s channels of the photonic ADC based on an integrated silicon photonic chip. This ADC was used to digitize a 10 GHz RF signal. (a) Fourier transform of data points recorded in individual channels, and (b) Fourier transform of interleaved data. 4096 data points were captured in each channel; Blackman windowing was used to improve the dynamic range.

Fig. 7
Fig. 7

(a) Photograph of two matched 20-channel filter banks fabricated on a silicon chip. Each bank is intended to demultiplex one of the two complementary outputs of the MZ modulator. The filters are second-order microring-resonator filters. Microheaters fabricated on top of each ring are used to thermally tune resonant frequencies in order to compensate for fabrication errors and put the resonances on a desired grid. (b) Measured transmission of the 20 channels; the overlapping red and the blue lines correspond to the two matched banks. The channels exhibit 21-26 GHz bandwidth, 80 GHz channel spacing, and 32-36 dB extinction at center wavelength of an adjacent channel. The transmission is normalized to the transmission of off-resonance light through the system. The average insertion loss is 1.7 dB; values for indi-vidual channels range from 1.1 to 2.8 dB likely due to fiber-to-chip coupling loss variations.

Metrics