Abstract

The refractive indexes, material attenuation and damage fractions of a multi-step ion implanted Lithium Niobate (LiNbO3) waveguide were analyzed as functions of the annealing temperatures. An almost flat damage depth profile was designed to reduce the uncertainties related to the indexes profile shape, thus providing a better test-case for the characterizations. The measurements performed on the fabricated optical waveguides confirmed the predicted step-index profiles showing that the light is confined inside the damaged layer. The low measured attenuation (less than 0.8 dB/cm @ 632.8 nm) makes the obtained waveguide attractive for device fabrication.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Wong, Properties of Lithium Niobate, EMIS Datareviews No. 28, INSPEC (The Institution of Electrical Engineers, London, 2002).
  2. P. D. Townsend, “Ion implantation and integrated optics,” J. Phys. E Sci. Instrum. 10(3), 197–203 (1977).
    [CrossRef]
  3. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [CrossRef]
  4. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
    [CrossRef] [PubMed]
  5. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
    [CrossRef]
  6. S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
    [CrossRef]
  7. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
    [CrossRef]
  8. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12(12), 2901–2908 (1973).
    [CrossRef] [PubMed]
  9. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
    [CrossRef]
  10. J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping and ranges of ions in solids (Pergamon, 1985), http://www.srim.org .
  11. S. Jetschke, H. Karge, and K. Hehl, “Anisotropic effects in N+-implanted LiNbO3,” Phys. Status Solidi A 77(1), 207–214 (1983).
    [CrossRef]
  12. G. Götz and H. Karge, “Ion implantation into LiNbO3,” Nucl. Instrum. Methods 209-210, 1079–1088 (1983).
    [CrossRef]
  13. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
    [CrossRef]
  14. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44(35), 7532–7539 (2005).
    [CrossRef] [PubMed]
  15. Crystal Technology, Inc., Lithium Niobate Optical Crystals, Data sheet. http://www.crystaltechnology.com/docs/LNopt.pdf
  16. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10(1), 54–59 (2002).
    [PubMed]

2010

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

2009

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

2007

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

2005

2002

2001

1986

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

1983

S. Jetschke, H. Karge, and K. Hehl, “Anisotropic effects in N+-implanted LiNbO3,” Phys. Status Solidi A 77(1), 207–214 (1983).
[CrossRef]

G. Götz and H. Karge, “Ion implantation into LiNbO3,” Nucl. Instrum. Methods 209-210, 1079–1088 (1983).
[CrossRef]

1977

P. D. Townsend, “Ion implantation and integrated optics,” J. Phys. E Sci. Instrum. 10(3), 197–203 (1977).
[CrossRef]

1973

Bassi, P.

Bellanca, G.

Bentini, G. G.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Bianconi, M.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Centurioni, E.

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

Chen, F.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef] [PubMed]

Chiarini, M.

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

De Nicola, P.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Fogli, F.

Götz, G.

G. Götz and H. Karge, “Ion implantation into LiNbO3,” Nucl. Instrum. Methods 209-210, 1079–1088 (1983).
[CrossRef]

Hehl, K.

S. Jetschke, H. Karge, and K. Hehl, “Anisotropic effects in N+-implanted LiNbO3,” Phys. Status Solidi A 77(1), 207–214 (1983).
[CrossRef]

Hu, H.

Jetschke, S.

S. Jetschke, H. Karge, and K. Hehl, “Anisotropic effects in N+-implanted LiNbO3,” Phys. Status Solidi A 77(1), 207–214 (1983).
[CrossRef]

Jia, C. L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Jiang, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Jiao, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Karge, H.

G. Götz and H. Karge, “Ion implantation into LiNbO3,” Nucl. Instrum. Methods 209-210, 1079–1088 (1983).
[CrossRef]

S. Jetschke, H. Karge, and K. Hehl, “Anisotropic effects in N+-implanted LiNbO3,” Phys. Status Solidi A 77(1), 207–214 (1983).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

Lu, F.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef] [PubMed]

Malacarne, A.

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

Menin, A.

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

Montanari, G. B.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Nubile, A.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Potì, L.

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

Saccomandi, L.

Shen, D. Y.

Shi, B. R.

Sugliani, S.

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Torge, R.

Townsend, P. D.

P. D. Townsend, “Ion implantation and integrated optics,” J. Phys. E Sci. Instrum. 10(3), 197–203 (1977).
[CrossRef]

Trillo, S.

Ulrich, R.

Wang, K. M.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef] [PubMed]

Wang, L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Wang, X. L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

J. Phys. E Sci. Instrum.

P. D. Townsend, “Ion implantation and integrated optics,” J. Phys. E Sci. Instrum. 10(3), 197–203 (1977).
[CrossRef]

Nucl. Instrum. Meth. B

S. Sugliani, M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Menin, A. Malacarne, and L. Potì, “Refractive index tailoring in congruent Lithium Niobate by ion implantation,” Nucl. Instrum. Meth. B 268(19), 2911–2914 (2010).
[CrossRef]

Nucl. Instrum. Methods

G. Götz and H. Karge, “Ion implantation into LiNbO3,” Nucl. Instrum. Methods 209-210, 1079–1088 (1983).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Nucl. Instrum. Methods Phys. Rev. B

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, A. Menin, G. B. Montanari, A. Nubile, and S. Sugliani, “Simulation of damage induced by ion implantation in Lithium Niobate,” Nucl. Instrum. Methods Phys. Rev. B 268(22), 3452–3457 (2010).
[CrossRef]

Opt. Acta (Lond.)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33(2), 127–143 (1986).
[CrossRef]

Opt. Express

Phys. Rev. B

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in Lithium Niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Phys. Status Solidi A

S. Jetschke, H. Karge, and K. Hehl, “Anisotropic effects in N+-implanted LiNbO3,” Phys. Status Solidi A 77(1), 207–214 (1983).
[CrossRef]

Other

Crystal Technology, Inc., Lithium Niobate Optical Crystals, Data sheet. http://www.crystaltechnology.com/docs/LNopt.pdf

K. K. Wong, Properties of Lithium Niobate, EMIS Datareviews No. 28, INSPEC (The Institution of Electrical Engineers, London, 2002).

J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping and ranges of ions in solids (Pergamon, 1985), http://www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Simulated Energy density released in nuclear collisions for the designed multi-step ion implantation.

Fig. 2
Fig. 2

Defective fractions measured by RBS-c as functions of annealing temperature.

Fig. 4
Fig. 4

Z-cut m-lines measurements for different annealing temperatures.

Fig. 3
Fig. 3

Comparison of m-lines measurements for the two samples cuts.

Fig. 5
Fig. 5

RCM simulated extraordinary refractive index profiles for different annealing temperatures. The dashed curve represents the AI predicted profile according to [6].

Fig. 6
Fig. 6

RCM simulated ordinary refractive index profiles for different annealing temperatures. The dashed curve represents the AI predicted profile according to [6].

Fig. 7
Fig. 7

Percentage variations of ne and no plateau values as functions of annealing temperature.

Fig. 8
Fig. 8

Measured ordinary reflectance spectra in the visible region for every z-cut sample. The reflectance spectrum of the virgin crystal is also reported for comparison. Residual peaks are artifacts due to the spectrometer Deuterium lamp.

Fig. 9
Fig. 9

Measured ordinary transmittance spectra in the visible region for every z-cut sample. The transmittance spectrum of the virgin crystal is also reported for comparison. Residual peaks are artifacts due to the spectrometer Deuterium lamp.

Fig. 10
Fig. 10

NIR measured and simulated ordinary transmittance spectra for the as implanted z-cut sample.

Fig. 11
Fig. 11

Material absorption spectra in the visible region for every z-cut sample. The absorption spectrum of the virgin crystal is also reported for comparison.

Fig. 12
Fig. 12

Material absorptions at fixed wavelengths as functions of annealing temperature. The error analysis is also reported.

Fig. 13
Fig. 13

Fundamental mode propagation loss @ 632.8 nm for the ANN 280°C sample.

Fig. 14
Fig. 14

Near Field intensity of the first propagating mode @ 660 nm for the ANN 280°C sample.

Fig. 15
Fig. 15

Near Field intensity of the second propagating mode @ 660 nm for the ANN 280°C sample.

Tables (1)

Tables Icon

Table 1 Multi-Step Ion Implantation Recipe

Metrics