Abstract

We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized. The angle resolved scattering has been measured and compared to predictions based on the measured surface topography and by the use of non-paraxial scalar diffraction theory. From this it is shown that the color of the transmitted light can be predicted from the topography of the randomly textured surfaces.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  2. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
    [CrossRef]
  3. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
    [CrossRef]
  4. Y. Yoon, H. Lee, S. Lee, S. Kim, J. Park, and K. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
    [CrossRef] [PubMed]
  5. H. Lee, Y. Yoon, S. Lee, S. Kim, and K. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15, 15457–15463 (2007).
    [CrossRef] [PubMed]
  6. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
    [CrossRef]
  7. Y. Ye, Y. Zhou, H. Zhang, and L. Chen, “Polarizing color filter based on a subwavelength metal-dielectric grating,” Appl. Opt. 50, 1356–1363 (2011).
    [CrossRef] [PubMed]
  8. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  9. X. Hu, L. Zhan, and Y. Xia, “Color filters based on enhanced optical transmission of subwavelength-structured metallic film for multicolor organic light-emitting diode display,” Appl. Opt. 47, 4275–4279 (2008).
    [CrossRef] [PubMed]
  10. R. Leitel, A. Kaless, U. Schulz, and N. Kaiser, “Broadband antireflective structures on pmma by plasma treatment,” Plasma Process. Polym. 4, S878–S881 (2007).
    [CrossRef]
  11. I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
    [CrossRef]
  12. C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
    [CrossRef] [PubMed]
  13. H. Schift and A. Kristensen, “Nanoimprint lithography—patterning of resists using molding,” in Springer Handbook of Nanotechnology, B. Bhushan, ed. (Springer, 2010), pp. 271–312.
    [CrossRef]
  14. L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
    [CrossRef]
  15. H. Jansen, M. d. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995).
    [CrossRef]
  16. S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
    [CrossRef]
  17. D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
    [CrossRef]
  18. J. E. Harvey, “Fourier treatment of near-field scalar diffraction theory,” Am. J. Phys. 47, 974 (1979).
    [CrossRef]
  19. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, “Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory,” Appl. Opt. 38, 6469–6481 (1999).
    [CrossRef]

2011 (2)

Y. Ye, Y. Zhou, H. Zhang, and L. Chen, “Polarizing color filter based on a subwavelength metal-dielectric grating,” Appl. Opt. 50, 1356–1363 (2011).
[CrossRef] [PubMed]

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

2010 (1)

D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[CrossRef]

2009 (2)

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
[CrossRef]

S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
[CrossRef]

2008 (4)

C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
[CrossRef] [PubMed]

X. Hu, L. Zhan, and Y. Xia, “Color filters based on enhanced optical transmission of subwavelength-structured metallic film for multicolor organic light-emitting diode display,” Appl. Opt. 47, 4275–4279 (2008).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Y. Yoon, H. Lee, S. Lee, S. Kim, J. Park, and K. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380 (2008).
[CrossRef] [PubMed]

2007 (3)

H. Lee, Y. Yoon, S. Lee, S. Kim, and K. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15, 15457–15463 (2007).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

R. Leitel, A. Kaless, U. Schulz, and N. Kaiser, “Broadband antireflective structures on pmma by plasma treatment,” Plasma Process. Polym. 4, S878–S881 (2007).
[CrossRef]

2006 (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

1999 (1)

1995 (1)

H. Jansen, M. d. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995).
[CrossRef]

1979 (1)

J. E. Harvey, “Fourier treatment of near-field scalar diffraction theory,” Am. J. Phys. 47, 974 (1979).
[CrossRef]

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Aura, S.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
[CrossRef]

Ballif, C.

D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[CrossRef]

Battaglia, C.

D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[CrossRef]

Baumann, M.

S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Boer, M. d.

H. Jansen, M. d. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995).
[CrossRef]

Chen, L.

Chou, C.

C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
[CrossRef] [PubMed]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Domine, D.

D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Elwenspoek, M.

H. Jansen, M. d. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995).
[CrossRef]

Franssila, S.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
[CrossRef]

Fu, C.

C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Harvey, J. E.

Haug, F. J.

D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[CrossRef]

Hu, X.

Huang, M.

C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
[CrossRef] [PubMed]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Jansen, H.

H. Jansen, M. d. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995).
[CrossRef]

Jokinen, V.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
[CrossRef]

Kaiser, N.

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
[CrossRef]

R. Leitel, A. Kaless, U. Schulz, and N. Kaiser, “Broadband antireflective structures on pmma by plasma treatment,” Plasma Process. Polym. 4, S878–S881 (2007).
[CrossRef]

Kaless, A.

R. Leitel, A. Kaless, U. Schulz, and N. Kaiser, “Broadband antireflective structures on pmma by plasma treatment,” Plasma Process. Polym. 4, S878–S881 (2007).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Kim, S.

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Kristensen, A.

H. Schift and A. Kristensen, “Nanoimprint lithography—patterning of resists using molding,” in Springer Handbook of Nanotechnology, B. Bhushan, ed. (Springer, 2010), pp. 271–312.
[CrossRef]

Krywonos, A.

Lee, H.

Lee, K.

Lee, S.

Legtenberg, R.

H. Jansen, M. d. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995).
[CrossRef]

Leitel, R.

R. Leitel, A. Kaless, U. Schulz, and N. Kaiser, “Broadband antireflective structures on pmma by plasma treatment,” Plasma Process. Polym. 4, S878–S881 (2007).
[CrossRef]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Munzert, P.

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
[CrossRef]

Park, J.

Sainiemi, L.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
[CrossRef]

Schift, H.

H. Schift and A. Kristensen, “Nanoimprint lithography—patterning of resists using molding,” in Springer Handbook of Nanotechnology, B. Bhushan, ed. (Springer, 2010), pp. 271–312.
[CrossRef]

Schulz, U.

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
[CrossRef]

R. Leitel, A. Kaless, U. Schulz, and N. Kaiser, “Broadband antireflective structures on pmma by plasma treatment,” Plasma Process. Polym. 4, S878–S881 (2007).
[CrossRef]

Shah, A.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Shpak, M.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

Suvanto, P.

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

Thompson, P. L.

Ting, C.

C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
[CrossRef] [PubMed]

Tsai, H.

C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
[CrossRef] [PubMed]

Tünnermann, A.

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
[CrossRef]

Vernold, C. L.

Wendling, I.

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
[CrossRef]

Xia, Y.

Ye, Y.

Yoon, Y.

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Zhan, L.

Zhang, H.

Zhou, Y.

Adv. Mater. (1)

L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Nonreflecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater. 23, 122–126 (2011).
[CrossRef]

Am. J. Phys. (1)

J. E. Harvey, “Fourier treatment of near-field scalar diffraction theory,” Am. J. Phys. 47, 974 (1979).
[CrossRef]

Appl. Opt. (3)

Endeavour (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

IEEE Photon. Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

J. Appl. Phys. (1)

D. Domine, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys. 107, 044504 (2010).
[CrossRef]

J. Micromech. Microeng. (1)

H. Jansen, M. d. Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995).
[CrossRef]

J. Nanosci. Nanotechno. (1)

S. Aura, V. Jokinen, L. Sainiemi, M. Baumann, and S. Franssila, “UV-embossed inorganic-organic hybrid nanopillars for bioapplications,” J. Nanosci. Nanotechno. 9, 6710–6715 (2009).
[CrossRef]

Nanotechnology (1)

C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19, 205301 (2008).
[CrossRef] [PubMed]

Nature (2)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Plasma Process. Polym. (2)

R. Leitel, A. Kaless, U. Schulz, and N. Kaiser, “Broadband antireflective structures on pmma by plasma treatment,” Plasma Process. Polym. 4, S878–S881 (2007).
[CrossRef]

I. Wendling, P. Munzert, U. Schulz, N. Kaiser, and A. Tünnermann, “Creating anti-reflective nanostructures on polymers by initial layer deposition before plasma etching,” Plasma Process. Polym. 6, S716–S721 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Other (1)

H. Schift and A. Kristensen, “Nanoimprint lithography—patterning of resists using molding,” in Springer Handbook of Nanotechnology, B. Bhushan, ed. (Springer, 2010), pp. 271–312.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Three different types of random surface structures fabricated in silicon by reactive ion etching. (b) The corresponding replica in Ormocomp fabricated in an UV-NIL process using a PDMS stamp casted from the silicon surface. The sharp corners of the silicon structures are rounded in the replication process. (c) Transmittance spectra of the three types of Ormocomp surface structures. The spectra are measured normal to the surface for normal incident light. The three types of surfaces appear orange, green, and blue respectively, when seen against a white light source.

Fig. 2
Fig. 2

(a) Silicon master with a black DTU-logo fabricated by selective removal of the surface structures around the logo using photolithography and isotropic silicon etching. The structures in the logo are of type 1 (Fig. 1(a)). (b) Replication in an Ormocomp film on a glass substrate fabricated by UV-NIL with a PDMS stamp casted from the master. When seen against a white light source the logo appears orange.

Fig. 3
Fig. 3

(a) Sketch of the measurement geometry for angle resolved measurements. The data are collected with normal incident light and the detector is moved to various angles measuring the intensity as function of θ. (b) Measured angular resolved scattering ARS(θ) for visible wavelengths. The data are multiplied by a factor of sinθ to achieve a probability distribution. (c) Typical profile from two dimensional scan recorded by AFM used for the modeling. (d) ARS(θ) calculated from a 20×20 μm2 scan of the surface topography. The data are normalized to all propagating modes and multiplied by sinθ. (e) Comparison of the experimentally measured data and the data calculated from the surface topography for three different wavelengths. (f) Comparison of the measured specular transmittance and the specular transmittance calculated from the measured surface topography.

Metrics