Abstract

The self-activated yellow-emitting phosphors of vanadates Ca5M4(VO4)6 (M = Mg, Zn) were synthesized via the solid-state reaction route. The formation of single phase compound with garnet structure was verified through X-ray diffraction (XRD) studies. The excitation and emission spectra and the thermal quenching of luminescence intensities were measured. The different luminescence properties of Ca5Mg4(VO4)6 and Ca5Zn4(VO4)6 phosphors were presented, e.g., the spectra shift, the luminescence lifetimes, the absolute quantum efficiency, the color coordinates and the Stokes shift. This deference was discussed on the base of the relationship between the micro-structure and the charge transfer transitions in [VO4]3- groups in the lattices. Ca5Mg4(VO4)6 could be suggested to be a potential yellow-emitting phosphor for the application on near-UV excited white LEDs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Hawthorne and C. Calvo, “The crystal chemistry of the M+VO3 (M+= Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes,” J. Solid State Chem. 22(2), 157–170 (1977).
    [CrossRef]
  2. M. Koichi, K. Miyamoto, S. Ujita, T. Saito, H. Ito, and T. Omatsu, “Dual-frequency picosecond optical parametric generator pumped by a Nd-doped vanadate bounce laser,” Opt. Express 19(19), 18523–18528 (2011).
    [CrossRef] [PubMed]
  3. J. Azkargorta, M. Bettinelli, I. Iparraguirre, S. Garcia-Revilla, R. Balda, and J. Fernández, “Random lasing in Nd:LuVO4 crystal powder,” Opt. Express 19(20), 19591–19599 (2011).
    [CrossRef] [PubMed]
  4. Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express 18(9), 9518–9524 (2010).
    [CrossRef] [PubMed]
  5. G. M. Thomas and M. J. Damzen, “Passively Q-switched Nd:YVO4 laser with greater than 11 W average power,” Opt. Express 19(5), 4577–4582 (2011).
    [CrossRef] [PubMed]
  6. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
    [CrossRef]
  7. K. C. Park and S. I. Mho, “Photoluminescence properties of Ba3V2O8,Ba3(1-x)Eu2xV2O8 and Ba2Y2/3V2O8:Eu3+,” J. Lumin. 122–123, 95–98 (2007).
    [CrossRef]
  8. H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
    [CrossRef]
  9. A. R. Dhobale, M. Mohapatra, V. Natarajan, and S. V. Godbole, “Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm,” J. Lumin. 132(2), 293–298 (2012).
    [CrossRef]
  10. G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).
  11. T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350 nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
    [CrossRef]
  12. A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
    [CrossRef]
  13. G. Bayer, “Vanadates A3B2V3O12 with garnet structure,” J. Am. Ceram. Soc. 48(11), 600 (1965).
    [CrossRef]
  14. T. Ziegler, A. Rauk, and E. J. Baerends, “On the calculation of multiplet energies by the hartree-fock-slater method,” Theor. Chim. Acta 43(3), 261–271 (1977).
    [CrossRef]
  15. S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
    [CrossRef]
  16. D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89, 173118 (2006).
  17. C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
    [CrossRef]
  18. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
    [CrossRef]
  19. H. Ronde and J. G. Snijder, “The position of the VO3−4 charge-transfer transition as a function of the V-O distance,” Chem. Phys. Lett. 50(2), 282–283 (1977).
    [CrossRef]

2012 (1)

A. R. Dhobale, M. Mohapatra, V. Natarajan, and S. V. Godbole, “Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm,” J. Lumin. 132(2), 293–298 (2012).
[CrossRef]

2011 (4)

2010 (2)

Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express 18(9), 9518–9524 (2010).
[CrossRef] [PubMed]

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
[CrossRef]

2009 (1)

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
[CrossRef]

2008 (1)

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).

2007 (1)

K. C. Park and S. I. Mho, “Photoluminescence properties of Ba3V2O8,Ba3(1-x)Eu2xV2O8 and Ba2Y2/3V2O8:Eu3+,” J. Lumin. 122–123, 95–98 (2007).
[CrossRef]

2006 (1)

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89, 173118 (2006).

2005 (1)

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[CrossRef]

2004 (1)

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

2003 (1)

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350 nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

1978 (1)

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

1977 (3)

T. Ziegler, A. Rauk, and E. J. Baerends, “On the calculation of multiplet energies by the hartree-fock-slater method,” Theor. Chim. Acta 43(3), 261–271 (1977).
[CrossRef]

H. Ronde and J. G. Snijder, “The position of the VO3−4 charge-transfer transition as a function of the V-O distance,” Chem. Phys. Lett. 50(2), 282–283 (1977).
[CrossRef]

F. C. Hawthorne and C. Calvo, “The crystal chemistry of the M+VO3 (M+= Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes,” J. Solid State Chem. 22(2), 157–170 (1977).
[CrossRef]

1965 (1)

G. Bayer, “Vanadates A3B2V3O12 with garnet structure,” J. Am. Ceram. Soc. 48(11), 600 (1965).
[CrossRef]

Azkargorta, J.

Baerends, E. J.

T. Ziegler, A. Rauk, and E. J. Baerends, “On the calculation of multiplet energies by the hartree-fock-slater method,” Theor. Chim. Acta 43(3), 261–271 (1977).
[CrossRef]

Balda, R.

Ban, T.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350 nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

Bayer, G.

G. Bayer, “Vanadates A3B2V3O12 with garnet structure,” J. Am. Ceram. Soc. 48(11), 600 (1965).
[CrossRef]

Beers, W. W.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[CrossRef]

Benmokhtar, S.

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

Bettinelli, M.

Blasse, G.

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

Calvo, C.

F. C. Hawthorne and C. Calvo, “The crystal chemistry of the M+VO3 (M+= Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes,” J. Solid State Chem. 22(2), 157–170 (1977).
[CrossRef]

Chaminade, J. P.

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

Chander, H.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89, 173118 (2006).

Cheetham, A. K.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).

Chen, Y. F.

Comanzo, H. A.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[CrossRef]

Damzen, M. J.

de Waal, D.

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

Dhobale, A. R.

A. R. Dhobale, M. Mohapatra, V. Natarajan, and S. V. Godbole, “Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm,” J. Lumin. 132(2), 293–298 (2012).
[CrossRef]

El Jazouli, A.

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

Fernández, J.

Garcia-Revilla, S.

Godbole, S. V.

A. R. Dhobale, M. Mohapatra, V. Natarajan, and S. V. Godbole, “Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm,” J. Lumin. 132(2), 293–298 (2012).
[CrossRef]

Gravereau, P.

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

Guillen, F.

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

Gundiah, G.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).

Haranath, D.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89, 173118 (2006).

Hawthorne, F. C.

F. C. Hawthorne and C. Calvo, “The crystal chemistry of the M+VO3 (M+= Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes,” J. Solid State Chem. 22(2), 157–170 (1977).
[CrossRef]

Huang, K. F.

Huang, Y. J.

Huang, Y. P.

Iparraguirre, I.

Isobe, M.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
[CrossRef]

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
[CrossRef]

Ito, H.

Kijima, N.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).

Kobayashi, N.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350 nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

Koichi, M.

Kumagai, T.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
[CrossRef]

Liang, H. C.

Lin, C. C.

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[CrossRef]

Liu, R. S.

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[CrossRef]

Manabe, T.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
[CrossRef]

Mho, S. I.

K. C. Park and S. I. Mho, “Photoluminescence properties of Ba3V2O8,Ba3(1-x)Eu2xV2O8 and Ba2Y2/3V2O8:Eu3+,” J. Lumin. 122–123, 95–98 (2007).
[CrossRef]

Miyamoto, K.

Mohapatra, M.

A. R. Dhobale, M. Mohapatra, V. Natarajan, and S. V. Godbole, “Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm,” J. Lumin. 132(2), 293–298 (2012).
[CrossRef]

Nakajima, T.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
[CrossRef]

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
[CrossRef]

Natarajan, V.

A. R. Dhobale, M. Mohapatra, V. Natarajan, and S. V. Godbole, “Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm,” J. Lumin. 132(2), 293–298 (2012).
[CrossRef]

Nishida, T.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350 nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

Omatsu, T.

Park, K. C.

K. C. Park and S. I. Mho, “Photoluminescence properties of Ba3V2O8,Ba3(1-x)Eu2xV2O8 and Ba2Y2/3V2O8:Eu3+,” J. Lumin. 122–123, 95–98 (2007).
[CrossRef]

Rauk, A.

T. Ziegler, A. Rauk, and E. J. Baerends, “On the calculation of multiplet energies by the hartree-fock-slater method,” Theor. Chim. Acta 43(3), 261–271 (1977).
[CrossRef]

Ronde, H.

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

H. Ronde and J. G. Snijder, “The position of the VO3−4 charge-transfer transition as a function of the V-O distance,” Chem. Phys. Lett. 50(2), 282–283 (1977).
[CrossRef]

Saito, T.

Setlur, A. A.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[CrossRef]

Sharma, P.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89, 173118 (2006).

Shimomura, Y.

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).

Singh, S.

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89, 173118 (2006).

Snijder, J. G.

H. Ronde and J. G. Snijder, “The position of the VO3−4 charge-transfer transition as a function of the V-O distance,” Chem. Phys. Lett. 50(2), 282–283 (1977).
[CrossRef]

Srivastava, A. M.

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[CrossRef]

Su, K. W.

Thomas, G. M.

Tsuchiya, T.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
[CrossRef]

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
[CrossRef]

Ueda, Y.

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
[CrossRef]

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
[CrossRef]

Ujita, S.

Ziegler, T.

T. Ziegler, A. Rauk, and E. J. Baerends, “On the calculation of multiplet energies by the hartree-fock-slater method,” Theor. Chim. Acta 43(3), 261–271 (1977).
[CrossRef]

Appl. Phys. Lett. (2)

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350 nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[CrossRef]

D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes,” Appl. Phys. Lett. 89, 173118 (2006).

Chem. Phys. Lett. (2)

G. Gundiah, Y. Shimomura, N. Kijima, and A. K. Cheetham, “Novel red phosphors based on vanadate garnets for solid state lighting applications,” Chem. Phys. Lett. 455(4–6), 279–283 (2008).

H. Ronde and J. G. Snijder, “The position of the VO3−4 charge-transfer transition as a function of the V-O distance,” Chem. Phys. Lett. 50(2), 282–283 (1977).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. Bayer, “Vanadates A3B2V3O12 with garnet structure,” J. Am. Ceram. Soc. 48(11), 600 (1965).
[CrossRef]

J. Electrochem. Soc. (1)

A. A. Setlur, H. A. Comanzo, A. M. Srivastava, and W. W. Beers, “Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12:Eu3+,” J. Electrochem. Soc. 152(12), H205–H208 (2005).
[CrossRef]

J. Inorg. Nucl. Chem. (1)

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

J. Lumin. (3)

A. R. Dhobale, M. Mohapatra, V. Natarajan, and S. V. Godbole, “Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm,” J. Lumin. 132(2), 293–298 (2012).
[CrossRef]

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, “A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn),” J. Lumin. 129(12), 1598–1601 (2009).
[CrossRef]

K. C. Park and S. I. Mho, “Photoluminescence properties of Ba3V2O8,Ba3(1-x)Eu2xV2O8 and Ba2Y2/3V2O8:Eu3+,” J. Lumin. 122–123, 95–98 (2007).
[CrossRef]

J. Phys. Chem. C (1)

T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Manabe, “Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra,” J. Phys. Chem. C 114(11), 5160–5167 (2010).
[CrossRef]

J. Phys. Chem. Lett. (1)

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[CrossRef]

J. Solid State Chem. (2)

S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, and D. de Waal, “Synthesis, crystal structure and optical properties of BiMgVO5,” J. Solid State Chem. 177(11), 4175–4182 (2004).
[CrossRef]

F. C. Hawthorne and C. Calvo, “The crystal chemistry of the M+VO3 (M+= Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes,” J. Solid State Chem. 22(2), 157–170 (1977).
[CrossRef]

Opt. Express (4)

Theor. Chim. Acta (1)

T. Ziegler, A. Rauk, and E. J. Baerends, “On the calculation of multiplet energies by the hartree-fock-slater method,” Theor. Chim. Acta 43(3), 261–271 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

XRD patterns of Ca5Mg4(VO4)6 and Ca5Zn4(VO4)6.

Fig. 2
Fig. 2

the schematic view of Ca5Mg4(VO4)6 structure along a-direction.

Fig. 3
Fig. 3

the normalized PL and PLE for Ca5Mg4(VO4)6 and Ca5Zn4(VO4)6 samples. The two dashed lines are the fitted the emission spectrum of Ca5Mg4(VO4)6 by two Gaussian components named as Em1 and Em2.

Fig. 4
Fig. 4

The excitation and emission processes in VO4 tetrahedron with Td symmetry in Ca5Mg4(VO4)6 and Ca5Zn4(VO4)6.

Fig. 5
Fig. 5

The luminescence decay curves of Ca5Mg4(VO4)6 and Ca5Zn4(VO4)6 samples under the excitation of the third harmonic 355 nm of a pulsed Nd:YAG laser.

Fig. 6
Fig. 6

Temperature-dependent luminescence of CMZ. Inset shows the luminescence intensity of thermal quenching normalized to the value at 25 °C.

Fig. 7
Fig. 7

A schematic configuration coordinate diagram for the excited state level Eexc and the ground state Eg in VO4, together with the electronic transitions.

Tables (1)

Tables Icon

Table 1 Comparison of QEs of Ca5M4(VO4)6 (M = Mg, Zn) with commercial yellow-emitting phosphors [16] and the and some vanadates phosphors selected from ref [18].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ average = 0 I(t)tdt 0 I(t)dt

Metrics