Abstract

Liquid crystalline molecules carrying photopolymerizable end groups absorb photon energy via a two-photon process, enabling the photofabrication of 3D structures. In this work, we prepared microgears with different heights and tooth lengths. These birefringent microgears can be induced to rotate by circularly polarized light. Here, we demonstrate that the use of phase plate for switching between left- and right-handed polarization reverses the optically induced rotation while maintaining the same rotational frequency. Due to the precise switching control, these birefringent microgears have advantages over previous microrotors that are fabricated from non-birefringent light-curing resins.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
    [CrossRef]
  2. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [CrossRef]
  3. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nature Mat. 4(7), 530–533 (2005).
    [CrossRef]
  4. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
    [CrossRef]
  5. H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Phil. Trans. R. Soc. A 364(1847), 2789–2805 (2006).
    [CrossRef] [PubMed]
  6. T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84(21), 4292–4294 (2004).
    [CrossRef]
  7. E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77(4), 04170401–04170407 (2008).
    [CrossRef]
  8. K. Ito and M. Kimura, “Optically induced rotation of microcylinders made of photopolymerizable nematic liquid crystal,” Jpn. J. App. Phys. 49(4), 04020801–04020804 (2010).
    [CrossRef]
  9. C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73(5), 05170701–05170714 (2006).
    [CrossRef]
  10. Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express 16(21), 6877–6882 (2008).
    [CrossRef] [PubMed]
  11. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. 78(2), 249–251 (2001).
  12. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
    [CrossRef]
  13. H. Ukita and H. Kawashima, “Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position,” Appl. Opt. 49(10), 1991–1996 (2010).
    [CrossRef] [PubMed]
  14. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
    [CrossRef]
  15. L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-starting micromotors in a bacterial bath,” Phys. Rev. Lett. 102(4), 04810401–04810404 (2009).
    [CrossRef]

2010 (2)

K. Ito and M. Kimura, “Optically induced rotation of microcylinders made of photopolymerizable nematic liquid crystal,” Jpn. J. App. Phys. 49(4), 04020801–04020804 (2010).
[CrossRef]

H. Ukita and H. Kawashima, “Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position,” Appl. Opt. 49(10), 1991–1996 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
[CrossRef]

L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-starting micromotors in a bacterial bath,” Phys. Rev. Lett. 102(4), 04810401–04810404 (2009).
[CrossRef]

2008 (2)

Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express 16(21), 6877–6882 (2008).
[CrossRef] [PubMed]

E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77(4), 04170401–04170407 (2008).
[CrossRef]

2006 (2)

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73(5), 05170701–05170714 (2006).
[CrossRef]

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Phil. Trans. R. Soc. A 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

2005 (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nature Mat. 4(7), 530–533 (2005).
[CrossRef]

2004 (1)

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84(21), 4292–4294 (2004).
[CrossRef]

2003 (2)

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

2001 (1)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. 78(2), 249–251 (2001).

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[CrossRef]

Angelani, L.

L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-starting micromotors in a bacterial bath,” Phys. Rev. Lett. 102(4), 04810401–04810404 (2009).
[CrossRef]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[CrossRef]

Brasselet, E.

E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77(4), 04170401–04170407 (2008).
[CrossRef]

Brimicombe, P. D.

Dholakia, K.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nature Mat. 4(7), 530–533 (2005).
[CrossRef]

Di Leonardo, R.

L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-starting micromotors in a bacterial bath,” Phys. Rev. Lett. 102(4), 04810401–04810404 (2009).
[CrossRef]

Dickinson, M.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Phil. Trans. R. Soc. A 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Dickinson, M. R.

Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express 16(21), 6877–6882 (2008).
[CrossRef] [PubMed]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84(21), 4292–4294 (2004).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. 78(2), 249–251 (2001).

Gleeson, H. F.

Y. Yang, P. D. Brimicombe, N. W. Roberts, M. R. Dickinson, M. Osipov, and H. F. Gleeson, “Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap,” Opt. Express 16(21), 6877–6882 (2008).
[CrossRef] [PubMed]

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Phil. Trans. R. Soc. A 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84(21), 4292–4294 (2004).
[CrossRef]

Hasegawa, I.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

Ito, K.

K. Ito and M. Kimura, “Optically induced rotation of microcylinders made of photopolymerizable nematic liquid crystal,” Jpn. J. App. Phys. 49(4), 04020801–04020804 (2010).
[CrossRef]

Jánossy, I.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73(5), 05170701–05170714 (2006).
[CrossRef]

Juodkazis, S.

E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77(4), 04170401–04170407 (2008).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Kawashima, H.

Kimura, M.

K. Ito and M. Kimura, “Optically induced rotation of microcylinders made of photopolymerizable nematic liquid crystal,” Jpn. J. App. Phys. 49(4), 04020801–04020804 (2010).
[CrossRef]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nature Mat. 4(7), 530–533 (2005).
[CrossRef]

MacDonald, M. P.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nature Mat. 4(7), 530–533 (2005).
[CrossRef]

Manzo, C.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73(5), 05170701–05170714 (2006).
[CrossRef]

Marrucci, L.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73(5), 05170701–05170714 (2006).
[CrossRef]

Maruo, S.

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

Matsuo, S.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Misawa, H.

E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77(4), 04170401–04170407 (2008).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Murazawa, N.

E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77(4), 04170401–04170407 (2008).
[CrossRef]

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nature Mat. 4(7), 530–533 (2005).
[CrossRef]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. 78(2), 249–251 (2001).

Osipov, M.

Paparo, D.

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73(5), 05170701–05170714 (2006).
[CrossRef]

Roberts, N. W.

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Ruocco, G.

L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-starting micromotors in a bacterial bath,” Phys. Rev. Lett. 102(4), 04810401–04810404 (2009).
[CrossRef]

Saito, Y.

Takaura, A.

Ukita, H.

Wood, T. A.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Phil. Trans. R. Soc. A 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84(21), 4292–4294 (2004).
[CrossRef]

Wright, A. J.

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84(21), 4292–4294 (2004).
[CrossRef]

Yang, Y.

Appl. Opt. (1)

Appl. Phys. (1)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. 78(2), 249–251 (2001).

Appl. Phys. Lett. (2)

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[CrossRef]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84(21), 4292–4294 (2004).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

Jpn. J. App. Phys. (1)

K. Ito and M. Kimura, “Optically induced rotation of microcylinders made of photopolymerizable nematic liquid crystal,” Jpn. J. App. Phys. 49(4), 04020801–04020804 (2010).
[CrossRef]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Nature Mat. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nature Mat. 4(7), 530–533 (2005).
[CrossRef]

Opt. Express (2)

Phil. Trans. R. Soc. A (1)

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Phil. Trans. R. Soc. A 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[CrossRef]

Phys. Rev. E (2)

C. Manzo, D. Paparo, L. Marrucci, and I. Jánossy, “Light-induced rotation of dye-doped liquid crystal droplets,” Phys. Rev. E 73(5), 05170701–05170714 (2006).
[CrossRef]

E. Brasselet, N. Murazawa, S. Juodkazis, and H. Misawa, “Statics and dynamics of radial nematic liquid-crystal droplets manipulated by laser tweezers,” Phys. Rev. E 77(4), 04170401–04170407 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-starting micromotors in a bacterial bath,” Phys. Rev. Lett. 102(4), 04810401–04810404 (2009).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (2755 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental set-up for optical fabrication and manipulation.

Fig. 2
Fig. 2

Scanning electron microscope images of microgears with tooth lengths of 1 μm (a) and 2 μm (b).

Fig. 3
Fig. 3

Dependences of rotational frequency on incident laser power regarding four types of microgears with tooth lengths of 1 μm (a) and 2 μm (b). Red and blue circles represent frequencies for 14- and 10-μm-high microgears, respectively.

Fig. 4
Fig. 4

( Media 1) An optical microsopy image of a microgear (r = 4μm, h = 14μm) which first rotates left and subsequently right by the control of phase plate.

Tables (1)

Tables Icon

Table 1 Mean rotational frequencies and torques at a laser power of 180 mW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ E 0 2 { 1 cos ( 2 π λ Δ n h ) } ,
Γ = 32 3 η r 3 Ω ,

Metrics