Abstract

A hybrid CATV/OFDM long-reach PON architecture is proposed and experimentally demonstrated. By multiplexing the OFDM and CATV signals in different frequency bands, the overall network structure is simplified and the available bandwidth for the OFDM signals is increased. Furthermore, by carefully adjusting the driving voltage of the employed CATV transmitter, the overall transmission performance can be optimized by eliminating a large amount of unwanted distortions. Unlike the current fiber optical CATV transport system in which the CATV signals need to be amplified in every 30 ~40 km transmission span, the proposed architecture has successfully extended the transmission span to 60 km. This can practically remove the needs of electrical power provisioning and monitoring between the central office (CO) and each local exchange (LE). Good transmission performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple beat (CTB) and bit error rate (BER) were obtained for the transmitted CATV and OFDM signals. All of these experimental results prove the practice and efficiency of the proposed architecture in providing simplicity and extended reach services to customers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
    [CrossRef]
  2. W. J. Ho, H. C. Peng, H. H. Lu, C. L. Ying, and C. Y. Li, “Novel ROF/FTTX/CATV hybrid three-band transport system,” Opt. Express 19(7), 6980–6989 (2011).
    [CrossRef] [PubMed]
  3. M. Nakamura, H. Ueda, S. Makino, T. Yokotani, and K. Oshima, “Proposal of networking by PON technologies for full and ethernet services in FTTx,” J. Lightwave Technol. 22(11), 2631–2640 (2004).
    [CrossRef]
  4. P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
    [CrossRef]
  5. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
    [CrossRef]
  6. S. M. Lee, S. G. Mun, M. H. Kim, and C. H. Lee, “Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks,” J. Lightwave Technol. 25(1), 271–276 (2007).
    [CrossRef]
  7. K. Iwatsuki and J. I. Kani, “Applications and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units,” J. Opt. Commun. Netw. 1(4), C17–C24 (2009).
    [CrossRef]
  8. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol. 27(3), 273–291 (2009).
    [CrossRef]
  9. L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
    [CrossRef]
  10. H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
    [CrossRef] [PubMed]
  11. W. Y. Lin, C. H. Chang, P. C. Peng, H. H. Lu, and C. H. Huang, “Direct CATV modulation and phase remodulated radio-over-fiber transport system,” Opt. Express 18(10), 10301–10307 (2010).
    [CrossRef] [PubMed]
  12. S. C. Tsai, M. H. Huang, and Y. K. Chen, “Stimulated Raman scattering-induced baseband video distortion due to 1.65-µm OTDR online monitoring in 1.55-um AM-VSB CATV system,” IEEE Photon. Technol. Lett. 14(7), 1016–1018 (2002).
    [CrossRef]
  13. H. H. Lu, C. H. Chang, and P. C. Peng, Frontiers in Guided Wave Optics and Optoelectronics (InTech, 2010), pp. 647–662.
  14. C. H. Chang, W. C. Liu, P. C. Peng, H. H. Lu, P. Y. Wu, and J. B. Wang, “Hybrid cable television and orthogonal-frequency-division-multiplexing transport system basing on single wavelength polarization and amplitude remodulation schemes,” Opt. Lett. 36(9), 1716–1718 (2011).
    [CrossRef] [PubMed]
  15. W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, (Academic, 1999), pp. 32–62.
  16. A. Leung, Performance Analysis of SCM Optical Transmission Link for Fiber-to-the-Home (BSEE University of Missouri-Rolla, 2004), pp. 26–45.

2011 (2)

2010 (3)

2009 (4)

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

K. Iwatsuki and J. I. Kani, “Applications and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units,” J. Opt. Commun. Netw. 1(4), C17–C24 (2009).
[CrossRef]

R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol. 27(3), 273–291 (2009).
[CrossRef]

2008 (1)

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

2007 (1)

2004 (1)

2002 (1)

S. C. Tsai, M. H. Huang, and Y. K. Chen, “Stimulated Raman scattering-induced baseband video distortion due to 1.65-µm OTDR online monitoring in 1.55-um AM-VSB CATV system,” IEEE Photon. Technol. Lett. 14(7), 1016–1018 (2002).
[CrossRef]

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Appathurai, S.

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Chang, C. H.

Chen, J.

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

Chen, Y. H.

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

Chen, Y. K.

S. C. Tsai, M. H. Huang, and Y. K. Chen, “Stimulated Raman scattering-induced baseband video distortion due to 1.65-µm OTDR online monitoring in 1.55-um AM-VSB CATV system,” IEEE Photon. Technol. Lett. 14(7), 1016–1018 (2002).
[CrossRef]

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

Chow, C. W.

L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Davey, R. P.

Grossman, D. B.

Ho, W. J.

Huang, C. H.

Huang, M. H.

S. C. Tsai, M. H. Huang, and Y. K. Chen, “Stimulated Raman scattering-induced baseband video distortion due to 1.65-µm OTDR online monitoring in 1.55-um AM-VSB CATV system,” IEEE Photon. Technol. Lett. 14(7), 1016–1018 (2002).
[CrossRef]

Iwatsuki, K.

Jiang, W. J.

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

Kani, J. I.

Kelly, A. E.

Kim, M. H.

Lee, C. H.

Lee, S. M.

Li, C. Y.

Lin, C. C.

Lin, C. T.

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

Lin, W. Y.

Lin, Y. Z.

Liu, W. C.

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Lu, H. H.

Makino, S.

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Mun, S. G.

Nakamura, M.

Nesset, D.

Oshima, K.

Payne, D. B.

Peng, H. C.

Peng, P. C.

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Rafel, A.

Rasztovits-Wiech, M.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Shih, P. T.

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

Tsai, S. C.

S. C. Tsai, M. H. Huang, and Y. K. Chen, “Stimulated Raman scattering-induced baseband video distortion due to 1.65-µm OTDR online monitoring in 1.55-um AM-VSB CATV system,” IEEE Photon. Technol. Lett. 14(7), 1016–1018 (2002).
[CrossRef]

Tsai, W. S.

Tsang, H. K.

L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
[CrossRef]

Tzeng, S. J.

Ueda, H.

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Wang, J. B.

Wu, P. Y.

Xu, L.

L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
[CrossRef]

Yang, S. H.

Yeh, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Ying, C. L.

Yokotani, T.

IEEE Photon. Technol. Lett. (4)

P. T. Shih, C. T. Lin, W. J. Jiang, Y. H. Chen, J. Chen, and S. Chi, “Hybrid access network integrated with wireless multilevel vector and wired baseband signals using frequency doubling and no optical filtering,” IEEE Photon. Technol. Lett. 21(13), 857–859 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

S. C. Tsai, M. H. Huang, and Y. K. Chen, “Stimulated Raman scattering-induced baseband video distortion due to 1.65-µm OTDR online monitoring in 1.55-um AM-VSB CATV system,” IEEE Photon. Technol. Lett. 14(7), 1016–1018 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (2)

Opt. Lett. (2)

Other (3)

H. H. Lu, C. H. Chang, and P. C. Peng, Frontiers in Guided Wave Optics and Optoelectronics (InTech, 2010), pp. 647–662.

W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, (Academic, 1999), pp. 32–62.

A. Leung, Performance Analysis of SCM Optical Transmission Link for Fiber-to-the-Home (BSEE University of Missouri-Rolla, 2004), pp. 26–45.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic diagrams of (a) a normal hybrid CATV/OFDM long-reach PON architecture and (b) the proposed hybrid CATV/OFDM long-reach PON architecture.

Fig. 2
Fig. 2

The experimental configuration of the proposed hybrid CATV/OFDM long-reach PON architecture.

Fig. 3
Fig. 3

Measured (a)CNR, (b)CSO, and (c)CTB values under various CATV channel numbers.

Fig. 4
Fig. 4

The measured BER curves and constellation maps.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CSO C = { 2 [ J 1 ( πA V π )] 2 [ J 0 ( πA V π )] N2 2 J 1 ( πA V π ) [ J 0 ( πA V π )] N1 } 2 N CSO { cos( π V π V dc ) sin( π V π V dc ) } 2

Metrics