Abstract

We report the fabrication of a waveguide structure in a near-stoichiometric lithium niobate crystal using 200-MeV argon-ion irradiation at a fluence of 2 × 1012 ions/cm2. Guided modes were detected in the visible and near-infrared wavelength regions, suggesting that the waveguide can be used at fiber communications wavelengths. The refractive index profiles of the waveguide were reconstructed from the effective index functions. Micro-Raman spectra recorded in the waveguide layer and the substrate showed that the Li/Nb ratio was preserved in the waveguide layer after swift argon-ion irradiation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
    [CrossRef]
  2. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
    [CrossRef]
  3. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
    [CrossRef]
  4. Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
    [CrossRef]
  5. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [CrossRef]
  6. K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80(24), 4492–4494 (2002).
    [CrossRef]
  7. L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra “strange” modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70(3), 1185–1189 (1991).
    [CrossRef]
  8. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
    [CrossRef] [PubMed]
  9. X. L. Wang, F. Chen, L. Wang, and Y. Jiao, “Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation,” J. Appl. Phys. 100(5), 056106 (2006).
    [CrossRef]
  10. D. L. Zhang, P. Zhang, H. J. Zhou, and E. Y. B. Pun, “Characterization of near-stoichiometric Ti: LiNbO3 strip waveguides with varied substrate refractive index in the guiding layer,” J. Opt. Soc. Am. A 25(10), 2558–2570 (2008).
    [CrossRef]
  11. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
    [CrossRef] [PubMed]
  12. X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
    [CrossRef]
  13. F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 μm,” Opt. Express 16(20), 16209–16214 (2008).
    [CrossRef] [PubMed]
  14. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
    [CrossRef]
  15. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
    [CrossRef] [PubMed]
  16. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
    [CrossRef]
  17. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26(1), 135–138 (1990).
    [CrossRef]
  18. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
    [CrossRef]
  19. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
    [CrossRef]

2008 (2)

2007 (2)

2006 (1)

X. L. Wang, F. Chen, L. Wang, and Y. Jiao, “Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation,” J. Appl. Phys. 100(5), 056106 (2006).
[CrossRef]

2005 (4)

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

2002 (1)

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80(24), 4492–4494 (2002).
[CrossRef]

2001 (1)

1998 (1)

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

1997 (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

1993 (1)

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
[CrossRef]

1991 (1)

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra “strange” modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70(3), 1185–1189 (1991).
[CrossRef]

1990 (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26(1), 135–138 (1990).
[CrossRef]

1985 (1)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
[CrossRef]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

1974 (1)

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Baldi, P.

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80(24), 4492–4494 (2002).
[CrossRef]

Betzler, K.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
[CrossRef]

Bourson, P.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Byer, R. L.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26(1), 135–138 (1990).
[CrossRef]

Caballero, O.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Carrascosa, M.

Chandler, P. J.

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra “strange” modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70(3), 1185–1189 (1991).
[CrossRef]

Chen, F.

Chiang, K. S.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
[CrossRef]

De Micheli, M.

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80(24), 4492–4494 (2002).
[CrossRef]

Fejer, M. M.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26(1), 135–138 (1990).
[CrossRef]

Fontana, M. D.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Fu, G.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Furukawa, Y.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Gallo, K.

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80(24), 4492–4494 (2002).
[CrossRef]

Gao, L.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

García, G.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Gopalan, V.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Hsia, Y. T.

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Hsieh, C. K.

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Hsu, W. C.

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Hu, H.

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

Jiao, Y.

X. L. Wang, F. Chen, L. Wang, and Y. Jiao, “Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation,” J. Appl. Phys. 100(5), 056106 (2006).
[CrossRef]

Jundt, D. H.

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26(1), 135–138 (1990).
[CrossRef]

Jung, C.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Kitamura, K.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Klauer, S.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
[CrossRef]

Ko, D. K.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Lan, C. W.

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Lee, J.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Lee, Y. L.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Li, S. L.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Liu, H.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Lu, F.

Lu, Q. M.

Ma, H. J.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Malovichko, G.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Méndez, A.

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

Nie, R.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Noh, Y. C.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Oh, K.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Olivares, J.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Pun, E. Y. B.

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

Ridah, A.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Ródenas, A.

Schlarb, U.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
[CrossRef]

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Shen, D. Y.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef] [PubMed]

Shi, B. R.

Shih, M. D.

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Tai, C. Y.

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Tan, Y.

Townsend, P. D.

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra “strange” modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70(3), 1185–1189 (1991).
[CrossRef]

Tsai, C. B.

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

Wang, K. M.

Wang, L.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

X. L. Wang, F. Chen, L. Wang, and Y. Jiao, “Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation,” J. Appl. Phys. 100(5), 056106 (2006).
[CrossRef]

Wang, L. L.

Wang, X. L.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

X. L. Wang, F. Chen, L. Wang, and Y. Jiao, “Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation,” J. Appl. Phys. 100(5), 056106 (2006).
[CrossRef]

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Wesselmann, M.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
[CrossRef]

Wöhlecke, M.

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
[CrossRef]

Yu, B. A.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Yu, T. J.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Zhang, D. L.

Zhang, L.

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra “strange” modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70(3), 1185–1189 (1991).
[CrossRef]

Zhang, P.

Zhou, H. J.

Appl. Opt. (1)

Appl. Phys. Lett. (7)

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998).
[CrossRef]

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

K. Gallo, M. De Micheli, and P. Baldi, “Parametric fluorescence in periodically poled LiNbO3 buried waveguides,” Appl. Phys. Lett. 80(24), 4492–4494 (2002).
[CrossRef]

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Mater. Sci. Process. 56, 311–315 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26(1), 135–138 (1990).
[CrossRef]

J. Appl. Phys. (2)

L. Zhang, P. J. Chandler, and P. D. Townsend, “Extra “strange” modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70(3), 1185–1189 (1991).
[CrossRef]

X. L. Wang, F. Chen, L. Wang, and Y. Jiao, “Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation,” J. Appl. Phys. 100(5), 056106 (2006).
[CrossRef]

J. Cryst. Growth (1)

C. B. Tsai, Y. T. Hsia, M. D. Shih, C. Y. Tai, C. K. Hsieh, W. C. Hsu, and C. W. Lan, “Zone-levelling czochralski growth of MgO-doped near-stoichiometric lithium niobate single crystals,” J. Cryst. Growth 275(3-4), 504–511 (2005).
[CrossRef]

J. Lightwave Technol. (1)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured relative intensity of the light reflected from the prism versus the effective refractive index of the incident 632.8-nm laser for the Ar-irradiated SLN waveguide. The inset shows the near-filed intensity distributions of the TE-polarized modes (TE0-TE2, and TE6) recorded using a CCD camera.

Fig. 2
Fig. 2

Measured relative intensity of the light reflected from the prism versus the effective refractive index of the incident 1539-nm laser for the Ar-irradiated SLN waveguide. The inset shows the near-filed intensity distribution of the fundamental TE-polarized mode recorded using a CCD camera.

Fig. 3
Fig. 3

(a) Electronic and nuclear stopping powers (Se and Sn) for 200-MeV argon ions simulated by the SRIM 2006 program. (b) The reconstructed no profile (solid thick line) and the estimated no profile (dashed line) of the waveguide structure at 632.8 nm wavelength. (c) The reconstructed no profile (solid thick line) and the estimated no profile (dashed line) of the waveguide structure at 1539 nm wavelength. The effective indices of the modes are depicted in (b) and (c) by red squares. The red thin lines in (b) and (c) are polynomial fits.

Fig. 4
Fig. 4

(a)–(c) Near-filed intensity distributions of the fundamental TE modes at 1300 nm, 1500 nm, and 1610 nm wavelengths. (d) The fundamental mode profiles at the three wavelengths calculated from the estimated refractive index profiles nλ(x). The three profiles are almost identical and cannot be differentiated from each other. The effective refractive indices of the three modes are shown at the bottom in (a)–(c).

Fig. 5
Fig. 5

(a) Micro-Raman spectra recorded in the SLN waveguide layer (red thick line), the SLN substrate (dotted line), and the CLN crystal (blue thin line). (b) Optical photograph of the polished end facet of the SLN waveguide. The two yellow spots indicate the depth at which spectra (i) and (ii) were recorded. (c) The normalized 156 cm−1 E(TO1) Raman peaks of the three spectra in (a).

Metrics