Abstract

We report on GaAs-based high power density vertical-cavity surface-emitting laser diodes (VCSELs) with ion implanted isolated current apertures. A continuous-wave output power of over 380 mW and the power density of 4.9 kW/cm2 have been achieved at 15 °C from the 100-μm-diameter aperture, which is the highest output characteristic ever reported for an ion implanted VCSEL. A high background suppression ratio of over 40 dB has also been obtained at the emission wavelength of 970 nm. The ion implantation technique provides an excellent current isolation in the apertures and would be a key to realize high power output from a VCSEL array.

© 2012 OSA

Full Article  |  PDF Article

Corrections

Akira Higuchi, Hideyuki Naito, Kousuke Torii, Masahiro Miyamoto, Takenori Morita, Junya Maeda, Hirofumi Miyajima, and Harumasa Yoshida, "High power density vertical-cavity surface-emitting lasers with ion implanted isolated current aperture: erratum," Opt. Express 20, 6203-6203 (2012)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-6-6203

References

  • View by:
  • |
  • |
  • |

  1. M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
    [CrossRef]
  2. L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).
  3. T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
    [CrossRef]
  4. F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
    [CrossRef]
  5. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
    [CrossRef]
  6. J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
    [CrossRef]
  7. L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
    [CrossRef]
  8. K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
    [CrossRef]
  9. F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
    [CrossRef]
  10. H. D. Kim, W. G. Jeong, H. E. Shin, J. H. Ser, H. K. Shin, and Y. G. Ju, “Reliability in the oxide vertical-cavity surface-emitting lasers exposed to electrostatic discharge,” Opt. Express 14(25), 12432–12438 (2006).
    [CrossRef] [PubMed]
  11. M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
    [CrossRef]
  12. K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
    [CrossRef]
  13. Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
    [CrossRef] [PubMed]
  14. Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).
  15. M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
    [CrossRef]
  16. J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).
  17. D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
    [CrossRef]
  18. E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
    [CrossRef]
  19. H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
    [CrossRef]
  20. Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
    [CrossRef] [PubMed]
  21. K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
    [CrossRef]
  22. D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
    [CrossRef]
  23. A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
    [CrossRef]

2011 (2)

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

2010 (4)

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

2009 (1)

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

2008 (1)

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

2007 (1)

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

2006 (1)

2005 (2)

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

2004 (1)

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

2003 (2)

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

2001 (1)

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

1999 (1)

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

1996 (1)

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

1994 (2)

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

1993 (1)

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

1990 (1)

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Baier, J.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Braun, M.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Bugge, F.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Cantos, B. D.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Carey, G. P.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Chalmers, S. A.

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Chang, Y. H.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Chang-Hasnain, C.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Clausen, E.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Coldren, L. A.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Cong, H.

Corzine, S. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Cui, J.

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

D’Asaro, L. A.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

D'Asaro, L. A.

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Deppe, D. G.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Doan, V. V.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Ebeling, K. J.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Erbert, G.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Florez, L. T.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Fricke, J.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Ghosh, C. L.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Grabherr, M.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Gronenborn, S.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Ha, W.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Harbison, J. P.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Heald, D. L.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Hiraiwa, K.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Hitchens, W. R.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Hsueh, T. H.

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Hu, Y.

Huffaker, D. L.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Imai, S.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Ishikawa, T.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Iwai, N.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Jäger, R.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Jeong, W. G.

Jewell, J. E.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Ju, Y. G.

Kamiya, S.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Kasukawa, A.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Kawakita, Y.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Kennedy, K. W.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Khalfin, V.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Kilcoyne, S. P.

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Kim, H. D.

King, R.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

Klehr, A.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Knauer, A.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Kolb, J.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Kumar, K.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Kuo, H. C.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Lai, F. I.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Lai, L. H.

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Laih, L. H.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

Lear, K. L.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Lee, D.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Lehmen, A. C. V.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Lewis, A.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Li, T.

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Liu, D.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Liu, G.

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

Liu, J.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Liu, Y.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Majewski, M. L.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Martin, U.

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Mcinerney, J. G.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Michalzik, R.

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Miglo, A.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Miller, M.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Moench, H.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Mooradian, A.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Nevers, J. A.

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

Ning, Y.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Orenstein, M.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Pekarski, P.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Peters, F. H.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Peters, M. G.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Pradhan, P.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Qin, L.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

Ressel, P.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Rogers, T. J.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

Schemmann, M.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Schneider, R. P.

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

Scott, J. W.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Ser, J. H.

Seurin, J. F.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Shchegrov, A. V.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Shi, J.

Shimizu, H.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Shin, H. E.

Shin, H. K.

Shu, W. C.

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Stoffel, N. G.

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

Strzelecka, E. M.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Sun, Y.

Takagi, T.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Takaki, K.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Thibeault, B. J.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Tong, C.

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Tränkle, G.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Tsukiji, N.

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

Unold, H. J.

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Valster, A.

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Wang, C.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Wang, L.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Wang, S. C.

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Wang, W.

Wang, Y.

Wang, Z.

Watson, J. P.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Wenzel, H.

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

Wynn, J. D.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Xu, G.

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

Xu, H.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

Young, D. B.

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

Zeng, Y.

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

Zhang, J.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Zhang, L.

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Zhang, X.

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Y. Zhang, Y. Ning, L. Qin, Y. Wang, J. Cui, G. Liu, X. Zhang, Z. Wang, Y. Sun, Y. Liu, and L. Wang, “High-power vertical-cavity surface-emitting laser with an optimized p-contact diameter,” Appl. Opt. 49(19), 3793–3797 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

Zhang, Y.

Zhou, H.

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (2)

L. Zhang, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, D. Liu, H. Xu, J. Zhang, and L. Wang, “High-power bottom-emitting vertical-cavity surface-emitting Lasers under continuous-wave, quasi-continuous-wave, and pulsed operation,” Appl. Phys. Express 4(5), 052102 (2011).
[CrossRef]

D. Liu, Y. Ning, Y. Zeng, L. Qin, Y. Liu, X. Zhang, L. Zhang, J. Zhang, C. Tong, and L. Wang, “High-power-density high-efficiency bottom-emitting vertical-cavity surface-emitting laser array,” Appl. Phys. Express 4(5), 052104 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett. 56(24), 2384 (1990).
[CrossRef]

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1), 97 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Miller, M. Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” IEEE J. Sel. Top. Quantum Electron. 7(2), 210–216 (2001).
[CrossRef]

M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-power VCSELs: single devices and densely packed 2-D-arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. L. Lear, S. P. Kilcoyne, and S. A. Chalmers, “High power conversion efficiencies and scaling issues for multimode vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 6(7), 778–781 (1994).
[CrossRef]

Z. Wang, Y. Ning, T. Li, J. Cui, Y. Zhang, G. Liu, X. Zhang, L. Qin, Y. Liu, and L. Wang, “High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens,” IEEE Photon. Technol. Lett. 21, 239 (2009).

J. Lumin. (1)

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSEL’s single devices and 2-D arrays,” J. Lumin. 122–123, 571–573 (2007).
[CrossRef]

Opt. Express (2)

Photon. Spectra (1)

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 64 (2005).

Proc. SPIE (7)

F. I. Lai, Y. H. Chang, L. H. Laih, H. C. Kuo, and S. C. Wang, “Improvement of kink characteristic of proton implanted VCSEL with ITO overcoating,” Proc. SPIE 5364, 213–220 (2004).
[CrossRef]

J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power vertical-cavity surface-emitting arrays,” Proc. SPIE 6876, 68760D, 68760D-9 (2008).
[CrossRef]

K. L. Lear, S. P. Kilcoyne, R. P. Schneider, and J. A. Nevers, “Life-testing oxide-confined VCSELs: too good to last?” Proc. SPIE 2683, 114–122 (1996).
[CrossRef]

K. Takaki, N. Iwai, S. Kamiya, H. Shimizu, K. Hiraiwa, S. Imai, Y. Kawakita, T. Takagi, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection,” Proc. SPIE 7615, 761502–1, 761502-8 (2010).
[CrossRef]

A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, H. Wenzel, and G. Tränkle, “High-power ridge-waveguide and broad-area lasers with a DFB resonator in the wavelength range 760-790nm,” Proc. SPIE 5738, 416–424 (2005).
[CrossRef]

E. M. Strzelecka, J. G. Mcinerney, A. Mooradian, A. Lewis, A. V. Shchegrov, D. Lee, J. P. Watson, K. W. Kennedy, G. P. Carey, H. Zhou, W. Ha, B. D. Cantos, W. R. Hitchens, D. L. Heald, V. V. Doan, and K. L. Lear, “High power, high brightness 980 nm lasers based on the extended cavity surface emitting lasers concept,” Proc. SPIE 4993, 57–67 (2003).
[CrossRef]

H. Moench, J. Baier, S. Gronenborn, J. Kolb, M. Miller, P. Pekarski, M. Schemmann, and A. Valster, “Advanced characterization techniques for high power VCSELs,” Proc. SPIE 7615, 76150G–1, 76150G-11 (2010).
[CrossRef]

Solid-State Electron. (1)

F. I. Lai, T. H. Hsueh, Y. H. Chang, W. C. Shu, L. H. Lai, H. C. Kuo, and S. C. Wang, “Performance of 850 nm AlGaAs/GaAs implanted VCSELs utilizing silicon implantation induced disordering,” Solid-State Electron. 47(10), 1805–1809 (2003).
[CrossRef]

Other (1)

J. Piprek, Semiconductor Optoelectronic Devices (Academic Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic structure of the ion implanted VCSEL. The ion implanted aperture diameter is set to be 100 μm.

Fig. 2
Fig. 2

Cross-sectional SEM images of the device.

Fig. 3
Fig. 3

NFPs and their profiles at output powers of 100 mW, 150 mW and 200 mW.

Fig. 4
Fig. 4

Light-output current characteristics at temperature ranging form 15 to 75 °C.

Fig. 5
Fig. 5

SE at 15 °C under CW operation.The curve is calculated from the light-output current characteristics of the device and smoothed.

Fig. 6
Fig. 6

Temperature dependence on threshold current.

Fig. 7
Fig. 7

Typical optical spectrum at CW output power of 250 mW at RT.

Fig. 8
Fig. 8

Current dependence of emission wavelengths.

Metrics