Abstract

We report the validation of the Diagonal Scan (D-Scan) technique to determine the incubation parameter for ultrashort laser pulses ablation. A theory to calculate the laser pulses superposition and a procedure for quantifying incubation effects are described, and the results obtained for BK7 samples in the 100 fs regime are compared to the ones given by the traditional method, showing a good agreement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
    [CrossRef]
  2. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [CrossRef]
  3. J. Reif and F. Costache, “Femtosecond laser interaction with solid surfaces: explosive ablation and self-assembly of ordered nanostructures,” in Advances in Atomic Molecular, and Optical Physics, V. 53, G. Rempe and M. O. Scully, eds. (Elsevier Academic Press Inc, 2006), pp. 227–251.
  4. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
    [CrossRef] [PubMed]
  5. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
    [CrossRef]
  6. W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
    [CrossRef]
  7. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys, JETP-USSR 20, 1307–1314 (1965).
  8. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
    [CrossRef]
  9. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
    [CrossRef]
  10. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [CrossRef]
  11. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
    [CrossRef]
  12. F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys., A Mater. Sci. Process. 92(4), 897–902 (2008).
    [CrossRef]
  13. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
    [CrossRef]
  14. L. C. Courrol, R. E. Samad, L. Gomez, I. M. Ranieri, S. L. Baldochi, A. Zanardi de Freitas, and N. D. Vieira, “Color center production by femtosecond pulse laser irradiation in LiF crystals,” Opt. Express 12(2), 288–293 (2004).
    [CrossRef] [PubMed]
  15. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
    [CrossRef]
  16. S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
    [CrossRef]
  17. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
    [CrossRef]
  18. Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011).
    [CrossRef]
  19. D. Gomez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
    [CrossRef]
  20. H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt. 46(23), 5792–5799 (2007).
    [CrossRef] [PubMed]
  21. J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
    [CrossRef]
  22. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  23. R. E. Samad and N. D. Vieira., “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
    [CrossRef]
  24. R. E. Samad, S. L. Baldochi, and N. D. Vieira., “Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold,” Appl. Opt. 47(7), 920–924 (2008).
    [CrossRef] [PubMed]
  25. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [CrossRef] [PubMed]
  26. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th printing, with corrections. ed., United States National Bureau of Standards Applied mathematics series (U.S. Govt. Print. Off., 1972).
  27. Wolfram Research Inc, “Jacobi theta function ϑ3” (1998–2011), retrieved 2011, http://functions.wolfram.com/EllipticFunctions/EllipticTheta3/06/01/03/ .
  28. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316 (2004).
    [CrossRef]
  29. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
    [CrossRef]

2011 (1)

Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011).
[CrossRef]

2009 (1)

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

2008 (2)

R. E. Samad, S. L. Baldochi, and N. D. Vieira., “Diagonal scan measurement of Cr:LiSAF 20 ps ablation threshold,” Appl. Opt. 47(7), 920–924 (2008).
[CrossRef] [PubMed]

F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys., A Mater. Sci. Process. 92(4), 897–902 (2008).
[CrossRef]

2007 (1)

2006 (2)

D. Gomez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

R. E. Samad and N. D. Vieira., “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
[CrossRef]

2005 (1)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

2004 (2)

2003 (2)

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

2002 (2)

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[CrossRef]

2001 (1)

J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

1999 (2)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

1998 (1)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

1997 (1)

1996 (1)

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

1988 (1)

1982 (1)

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
[CrossRef]

1966 (1)

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys, JETP-USSR 20, 1307–1314 (1965).

Arai, A.

Ashkenasi, D.

H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt. 46(23), 5792–5799 (2007).
[CrossRef] [PubMed]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Baldochi, S. L.

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

Becker, M. F.

Ben-Yakar, A.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316 (2004).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
[CrossRef]

Bonse, J.

J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Boukany, P. E.

Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011).
[CrossRef]

Bovatsek, J.

Bulgakova, N. M.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

Bussiere, B.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Byer, R. L.

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316 (2004).
[CrossRef]

Campbell, E. E. B.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

Cheng, Z.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

Chichkov, B. N.

Choi, H. W.

Clapp, B.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Costache, F.

F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys., A Mater. Sci. Process. 92(4), 897–902 (2008).
[CrossRef]

Courrol, L. C.

Coustillier, G.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Eckert, S.

F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys., A Mater. Sci. Process. 92(4), 897–902 (2008).
[CrossRef]

Farson, D. F.

Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011).
[CrossRef]

H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt. 46(23), 5792–5799 (2007).
[CrossRef] [PubMed]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[CrossRef]

Goenaga, I.

D. Gomez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

Gomez, D.

D. Gomez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

Gomez, L.

Hertel, I. V.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

Hertwig, A.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

Hunt, A. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Itina, T.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Jacobs, H.

Jasapara, J. C.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Jee, Y.

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Kautek, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys, JETP-USSR 20, 1307–1314 (1965).

Kogelnik, H.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Krausz, F.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Kruger, J.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Krüger, J.

J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Lee, L. J.

Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011).
[CrossRef]

Lenzner, M.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Leray, A.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Li, T.

Lim, Y. C.

Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Liu, J. M.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[CrossRef]

Martin, S.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

Mero, M.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Meyhofer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Momma, C.

Mourou, G.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Nolte, S.

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

Ranieri, I. M.

Reif, J.

F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys., A Mater. Sci. Process. 92(4), 897–902 (2008).
[CrossRef]

Ristau, D.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[CrossRef]

Rosenfeld, A.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

Rudolph, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Samad, R. E.

Sanner, N.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Sartania, S.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Sentis, M.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Spielmann, C.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Starke, K.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Stoian, R.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[CrossRef]

Tunnermann, A.

Utéza, O.

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Vieira, N. D.

Walser, R. M.

Wellegehausen, B.

Welling, H.

Wrobel, J. M.

J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

Zanardi de Freitas, A.

Appl. Opt. (3)

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69(21), 3146–3148 (1996).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

F. Costache, S. Eckert, and J. Reif, “Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics,” Appl. Phys., A Mater. Sci. Process. 92(4), 897–902 (2008).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys., A Mater. Sci. Process. 72(1), 89–94 (2001).
[CrossRef]

N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, “Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics,” Appl. Phys., A Mater. Sci. Process. 94(4), 889–897 (2009).
[CrossRef]

Appl. Surf. Sci. (2)

D. Gomez and I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10(3), 375–386 (1974).
[CrossRef]

J. Appl. Phys. (2)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[CrossRef]

A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316 (2004).
[CrossRef]

J. Micromech. Microeng. (1)

Y. C. Lim, P. E. Boukany, D. F. Farson, and L. J. Lee, “Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer,” J. Micromech. Microeng. 21(1), 015012 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

R. E. Samad and N. D. Vieira., “Geometrical method for determining the surface damage threshold for femtosecond laser pulses,” Laser Phys. 16(2), 336–339 (2006).
[CrossRef]

Opt. Eng. (1)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949–957 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[CrossRef]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[CrossRef] [PubMed]

Sov. Phys, JETP-USSR (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys, JETP-USSR 20, 1307–1314 (1965).

Other (3)

J. Reif and F. Costache, “Femtosecond laser interaction with solid surfaces: explosive ablation and self-assembly of ordered nanostructures,” in Advances in Atomic Molecular, and Optical Physics, V. 53, G. Rempe and M. O. Scully, eds. (Elsevier Academic Press Inc, 2006), pp. 227–251.

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th printing, with corrections. ed., United States National Bureau of Standards Applied mathematics series (U.S. Govt. Print. Off., 1972).

Wolfram Research Inc, “Jacobi theta function ϑ3” (1998–2011), retrieved 2011, http://functions.wolfram.com/EllipticFunctions/EllipticTheta3/06/01/03/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Profile etched on the surface of a sample by the D-Scan method for P = 7Pcrit = 7½eπw02Ith [23]. The axes are normalized by the beamwaist (w0) and the confocal parameter (z0), and the z-axis origin is at the beamwaist position.

Fig. 2
Fig. 2

Coordinates for the superposition derivation.

Fig. 3
Fig. 3

Convergence of the approximations. The red line represents the analytical Jacobi theta function ϑ 3 (0,Exp{ [ v y /(f ρ max )] 2 }) , and the dashed line is the approximation for small values or the argument (Eq. (13)). The blue lines are the values of the finite summation for (2m + 1) terms, showing a divergence for N>m.

Fig. 4
Fig. 4

Ablation spots on BK7 produced by the “zero damage method”.

Fig. 5
Fig. 5

Ablation threshold fluence dependence on the pulses superposition obtained by the “zero damage method” (red circles) and by the D-Scan method at three different energies (squares). The main contribution to the error bars came from the uncertainty of the ablated regions dimensions measurements.

Fig. 6
Fig. 6

Micrographs of samples etched by the D-Scan method. a) 1267.3 pulses superposition for E0 = 71 µJ, with a vertical separation of 200 µm that was used as scale. b) for E0 = 31 µJ, the upper profiles, vertically separated by 200 µm, represent 1.12 pulses superposition, and the lower profile is for a single pulse. The samples were cleaned in an ultrasonic cleaner with isopropyl alcohol.

Tables (1)

Tables Icon

Table 1 Fit Parameters Obtained by Both Methods

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

F th,N = F th,1 N S1 ,
F th = E0 eπ ρ max 2 0.117 E0 ρ max 2 ,
χ= z 0 2 eπ w 0 2 E 0 F th 1 ,
I(r,z)= 2 P 0 πw (z) 2 e 2 r 2 w (z) 2 ,
w(z)= w 0 [ 1+ ( z z 0 ) 2 ] 1/2 .
I(q,y,z)= 2 P 0 πw (z) 2 e 2 q 2 + (χy) 2 w (z) 2 .
I t 0 + n f = 2 P 0 πw (χ+ n v z f ) 2 e 2 q 2 + ( n v y f ) 2 w (χ+ n v z f ) 2 ,
I Tot = n= I t 0 + n f = 2 P 0 π n= 1 w (χ+ n v z f ) 2 e 2 q 2 + ( n v y f ) 2 w (χ+ n v z f ) 2 .
I Tot = P 0 π ρ max 2 e q 2 ρ max 2 n= e ( v y f ρ max ) 2 n 2 .
N= I Tot I 0 = n= e ( v y f ρ max ) 2 n 2 .
N= ϑ 3 (0, e ( v y f ρ max ) 2 ),
ϑ 3 (0,x) π 1x , for x <1.
N= π f ρ max v y 1.8 f ρ max v y , for v y f ρ max 0,

Metrics