Abstract

We propose and demonstrate the use of a wavefront analyzer based on lateral shearing interferometry to characterize the modal content of multimode fibers. This wavefront measurement technique is applied to large mode area fibers, and allows us to recover both the intensity and relative phase of each guided mode. This constitutes an innovative complete characterization of the beam, and might be used as a probe in deterministic active wavefront correction techniques.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  2. J. W. Nicholson, A. D. Yablon, J. F. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
    [CrossRef]
  3. Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
    [CrossRef]
  4. D. B. S. Soh, J. Nilsson, S. Baek, C. Codemard, Y. Jeong, and V. Philippov, “Modal power decomposition of beam intensity profiles into linearly polarized modes of multimode optical fibers,” J. Opt. Soc. Am. A 21(7), 1241–1250 (2004).
    [CrossRef] [PubMed]
  5. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
    [CrossRef] [PubMed]
  6. F. Stutzki, H. J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
    [CrossRef] [PubMed]
  7. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
    [CrossRef] [PubMed]
  8. J. Primot, “Three-wave lateral shearing interferometer,” Appl. Opt. 32(31), 6242–6249 (1993).
    [CrossRef] [PubMed]
  9. J. Primot and N. Guérineau, “Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard,” Appl. Opt. 39(31), 5715–5720 (2000).
    [CrossRef] [PubMed]
  10. J. C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wave-front measurements of high-intensity ultrashort laser pulses with a three-wave interferometer,” Opt. Lett. 23(8), 621–623 (1998).
    [CrossRef] [PubMed]
  11. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, “Measuring the spatial polarization distribution of multimode beams emerging from passive step-index large-mode-area fibers,” Opt. Lett. 35(20), 3429–3431 (2010).
    [CrossRef] [PubMed]
  12. J. A. Buck, Fundamentals of Optical Fibers (Wiley, Hoboken, NJ, 2004).
  13. J. C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt. 44(9), 1559–1571 (2005).
    [CrossRef] [PubMed]
  14. C. Bellanger, B. Toulon, J. Primot, L. Lombard, J. Bourderionnet, and A. Brignon, “Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining,” Opt. Lett. 35(23), 3931–3933 (2010).
    [CrossRef] [PubMed]

2011

2010

2009

T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
[CrossRef] [PubMed]

J. W. Nicholson, A. D. Yablon, J. F. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

2008

2005

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

J. C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt. 44(9), 1559–1571 (2005).
[CrossRef] [PubMed]

2004

2000

1998

1993

Abouraddy, A. F.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

Baek, S.

Bellanger, C.

Borchardt, J.

Bourderionnet, J.

Brignon, A.

Chanteloup, J. C.

Codemard, C.

Druon, F.

Duparré, M.

Fini, J. F.

J. W. Nicholson, A. D. Yablon, J. F. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

Fink, Y.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

Flamm, D.

Gaida, C.

Ghalmi, S.

Guérineau, N.

Jansen, F.

Jauregui, C.

Jeong, Y.

Joannopoulos, J. D.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

Kaiser, T.

Leuchs, G.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Limpert, J.

Lombard, L.

Ma, Y. Z.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Maksimchuk, A.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. F. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

Mourou, G.

Nantel, M.

Nicholson, J. W.

J. W. Nicholson, A. D. Yablon, J. F. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

Nilsson, J.

Onishchukov, G.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Otto, H. J.

Peschel, U.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Philippov, V.

Primot, J.

Ramachandran, S.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

Schmauss, B.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Schmidt, O. A.

Schröter, S.

Schulze, C.

Shapira, O.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

Soh, D. B. S.

Stutzki, F.

Sych, Y.

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

Toulon, B.

Tünnermann, A.

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. F. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

Y. Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U. Peschel, B. Schmauss, and G. Leuchs, “Fiber –modes and fiber-anisotropy characterization using low-coherence interferometry,” Appl. Phys. B 96(2-3), 345–353 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. W. Nicholson, A. D. Yablon, J. F. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 61–70 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94(14), 143902 (2005).
[CrossRef] [PubMed]

Other

J. A. Buck, Fundamentals of Optical Fibers (Wiley, Hoboken, NJ, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Left) Experimental setup. MO: microscope objective. WFA: wavefront analyzer. (Right) Calibration intensity profile obtained by coupling a low coherence light source to the fiber.

Fig. 2
Fig. 2

Left: theoretical reconstruction error induced by a misalignment of a LP02 beam. Right: intensity profile of the experimental reference beam.

Fig. 3
Fig. 3

Simulated reference field composed of 90% LP01 and 10% LP11 with a random phase. The white circle indicates the dimensions of the fiber core.

Fig. 4
Fig. 4

Simulated reconstruction of the multimode beam with subtraction of the reference field phase. Top: simulated actual beam (no reference phase subtraction) at the output of the fiber. Middle: simulated measured beam (reference phase subtracted). Bottom: projection of the measured beam on the theoretical modes supported by the fiber.

Fig. 5
Fig. 5

(a). Top: Measured intensity and phase profiles at the output of the multimode fiber with the wavefront analyzer. The intensity is normalized and the colour scale for the phase is [-π, π]. Bottom: reconstructed intensity and phase profiles after projection on the theoretical modes. (b). Modal weights and (c) relative phase coefficients after projection on the theoretical modes. The phase coefficients given are the relative phase with respect to the one of the fundamental mode.

Fig. 6
Fig. 6

(a). Measured and reconstructed phase and intensity profile in the case of an excitation close to the LP21 mode. The intensity profile is normalized and the phase is given between [-π, π]. (b) and (c): Corresponding modal decomposition.

Fig. 7
Fig. 7

(a). Measured and reconstructed phase and intensity profile in the case of an arbitrary mode excitation. The intensity profile is normalized and the phase is given between [0, π]. (b) and (c): Corresponding modal decomposition.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E mes (x,y)= I mes (x,y) .exp(i Φ mes (x,y)).
c jk = E mes (x,y). E LPjk * (x,y)dxdy ( | E mes (x,y) | 2 dxdy )( | E LPjk (x,y) | 2 dxdy ) .
c jk = c Pjk .exp(i Φ jk ),
E r (x,y)= 1 N c jk . E LPjk (x,y) .
Δ= 1 N pixels Npixels | E mes E r | 2 .
C= max r | E mes (r'r). E r * (r')dr' |.

Metrics