Abstract

Emission of terahertz radiation is observed when surface plasmons are excited on a thin film of gold, in the Kretschmann geometry. When a hemicyanine-terminated alkanethiol self-assembled monolayer of thickness 1.2 nm is deposited on the gold film, stronger terahertz emission is observed. Our experimental results confirm that enhanced terahertz emission is possible from planar gold surfaces when surface plasmons are excited.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sakai, ed., Terahertz optoelectronics (Springer-Verlag, Berlin Hiedelberg, 2005).
    [CrossRef]
  2. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
    [CrossRef]
  3. A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23, 867–869 (1998).
    [CrossRef]
  4. R. W. Boyd, Nonlinear optics, 2nd edition, (Academic Press, San Diego, 2003).
  5. F. Kadlec, P. Kužel, and J. -L. Coutaz, “Optical rectification at metal surfaces,” Opt. Lett. 29, 2674–2676 (2004).
    [CrossRef] [PubMed]
  6. F. Kadlec, P. Kužel, and J. -L. Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30, 1402–1404 (2005).
    [CrossRef] [PubMed]
  7. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
    [CrossRef] [PubMed]
  8. G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17, 2470–2480 (2009).
    [CrossRef] [PubMed]
  9. D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11, 4718–4724 (2011).
    [CrossRef] [PubMed]
  10. A. D. Gladun, V. G. Leiman, and A. V. Arsenin, “On the mechanism of generation of terahertz electromagnetic radiation upon irradiation of a nanostructured metal surface by femtosecond laser pulses,” Quantum Electron. 37, 1166–1168 (2007).
    [CrossRef]
  11. Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
    [CrossRef]
  12. F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
    [CrossRef]
  13. G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572–2574 (2011).
    [CrossRef] [PubMed]
  14. J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
    [CrossRef]
  15. R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
    [CrossRef]
  16. K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
    [CrossRef]
  17. R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
    [CrossRef]
  18. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004).
    [CrossRef]
  19. R. Chakkittakandy, J. A. Corver, and P. C. M. Planken, “Quasi-near field terahertz generation and detection,” Opt. Express 16, 12794–12805 (2008).
    [PubMed]
  20. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
    [CrossRef]
  21. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005), http://www.sciencedirect.com/science/article/pii/S0030401804012519 .
    [CrossRef]
  22. T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
    [CrossRef]
  23. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  24. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]

2011 (3)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11, 4718–4724 (2011).
[CrossRef] [PubMed]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36, 2572–2574 (2011).
[CrossRef] [PubMed]

2009 (3)

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
[CrossRef]

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17, 2470–2480 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

A. D. Gladun, V. G. Leiman, and A. V. Arsenin, “On the mechanism of generation of terahertz electromagnetic radiation upon irradiation of a nanostructured metal surface by femtosecond laser pulses,” Quantum Electron. 37, 1166–1168 (2007).
[CrossRef]

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

2005 (2)

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005), http://www.sciencedirect.com/science/article/pii/S0030401804012519 .
[CrossRef]

F. Kadlec, P. Kužel, and J. -L. Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30, 1402–1404 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

2001 (2)

K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
[CrossRef]

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

1998 (1)

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

1962 (1)

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Arsenin, A. V.

A. D. Gladun, V. G. Leiman, and A. V. Arsenin, “On the mechanism of generation of terahertz electromagnetic radiation upon irradiation of a nanostructured metal surface by femtosecond laser pulses,” Quantum Electron. 37, 1166–1168 (2007).
[CrossRef]

Barnes, W. L.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11, 4718–4724 (2011).
[CrossRef] [PubMed]

Bass, M.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear optics, 2nd edition, (Academic Press, San Diego, 2003).

Brantley, C.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Carey, J. J.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Chakkittakandy, R.

Chang, Y. -C.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Chen, M. -K.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Corver, J. A.

Coutaz, J. -L.

Edwards, E.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Franken, P. A.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Fukuyo, M.

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

Gao, Y.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Garwe, F.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Gladun, A. D.

A. D. Gladun, V. G. Leiman, and A. V. Arsenin, “On the mechanism of generation of terahertz electromagnetic radiation upon irradiation of a nanostructured metal surface by femtosecond laser pulses,” Quantum Electron. 37, 1166–1168 (2007).
[CrossRef]

Hashimoto, K.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
[CrossRef]

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005), http://www.sciencedirect.com/science/article/pii/S0030401804012519 .
[CrossRef]

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
[CrossRef]

Heinz, T. F.

A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23, 867–869 (1998).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Hendry, E.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11, 4718–4724 (2011).
[CrossRef] [PubMed]

Hübner, U.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Hui, R.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Hunt, N. T.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

Iiyama, T.

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

Ikezawa, H.

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
[CrossRef]

Jaroszynski, D. A.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Kadlec, F.

Kaise, G.

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

Kajikawa, K.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
[CrossRef]

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005), http://www.sciencedirect.com/science/article/pii/S0030401804012519 .
[CrossRef]

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
[CrossRef]

Kužel, P.

Leiman, V. G.

A. D. Gladun, V. G. Leiman, and A. V. Arsenin, “On the mechanism of generation of terahertz electromagnetic radiation upon irradiation of a nanostructured metal surface by femtosecond laser pulses,” Quantum Electron. 37, 1166–1168 (2007).
[CrossRef]

Luo, C.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

May, T.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Meyer, H. -G.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Nahata, A.

A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23, 867–869 (1998).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Naraoka, R.

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005), http://www.sciencedirect.com/science/article/pii/S0030401804012519 .
[CrossRef]

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
[CrossRef]

Okawa, H.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
[CrossRef]

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005), http://www.sciencedirect.com/science/article/pii/S0030401804012519 .
[CrossRef]

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
[CrossRef]

Paa, W.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Planken, P. C. M.

Polyushkin, D. K.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11, 4718–4724 (2011).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Ramakrishnan, G.

Ruffin, P.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Schmidt, A.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Stafast, H.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Stone, E. K.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11, 4718–4724 (2011).
[CrossRef] [PubMed]

Tanaka, D.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
[CrossRef]

Uzawa, R.

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
[CrossRef]

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

van der Valk, N. C. J.

Ward, J. F.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Weinreich, G.

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Welsh, G. H.

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17, 2470–2480 (2009).
[CrossRef] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

Wenckebach, T.

Wenckebach, W. Th.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Wynne, K.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17, 2470–2480 (2009).
[CrossRef] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Yang, C. -E

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Yin, S.

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

Zawadzka, J.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Zeisberger, M.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Zieger, G.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Appl. Phys. B (1)

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, and H. -G. Meyer, “Bi-directional terahertz emission from gold-coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102, 551–554 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

R. Uzawa, D. Tanaka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Optical rectification in self-assembled monolayers probed at surface plasmon resonance condition,” Appl. Phys. Lett. 95, 021107 (2009).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

R. Naraoka, G. Kaise, K. Kajikawa, H. Okawa, H. Ikezawa, and K. Hashimoto, “Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy,” Chem. Phys. Lett. 362, 26–30 (2002).
[CrossRef]

J. Appl. Phys. (1)

Y. Gao, M. -K. Chen, C. -E Yang, Y. -C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Analysis of terahertz generation via nanostructure enhanced plasmonic excitations,” J. Appl. Phys. 106, 074302 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mol. Cryst. and Liq. Cryst. (1)

K. Kajikawa, R. Naraoka, H. Okawa, H. Ikezawa, and K. Hashimoto, “Preparation and optical characterization of hemicyanine self-assembled monolayer on Au substrate,” Mol. Cryst. and Liq. Cryst. 370, 277–283 (2001).
[CrossRef]

Nano Lett. (1)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11, 4718–4724 (2011).
[CrossRef] [PubMed]

Opt. Commun. (2)

R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005), http://www.sciencedirect.com/science/article/pii/S0030401804012519 .
[CrossRef]

T. Iiyama, M. Fukuyo, R. Naraoka, H. Okawa, H. Ikezawa, K. Hashimoto, and K. Kajikawa, “Linear electrooptic effect in hemicyanine self-assembled monolayer on gold substrate,” Opt. Commun. 279, 320–323 (2007), http://www.sciencedirect.com/science/article/pii/S0030401807007559 .
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

Quantum Electron. (1)

A. D. Gladun, V. G. Leiman, and A. V. Arsenin, “On the mechanism of generation of terahertz electromagnetic radiation upon irradiation of a nanostructured metal surface by femtosecond laser pulses,” Quantum Electron. 37, 1166–1168 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 1715–1719 (2002).
[CrossRef]

Other (3)

K. Sakai, ed., Terahertz optoelectronics (Springer-Verlag, Berlin Hiedelberg, 2005).
[CrossRef]

R. W. Boyd, Nonlinear optics, 2nd edition, (Academic Press, San Diego, 2003).

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the setup. θ is the angle of incidence outside the prism, side a = 10 mm. (b) The optical geometry for the ATR excitation of the SAM on the Au film (not to scale). (c) Chemical structure of hemicyanine disulfide. ϕ is the angle between the molecular axis ξ and the z-axis which is normal to the sample surface.

Fig. 2
Fig. 2

SEM image of the Au layer.

Fig. 3
Fig. 3

(a) The emitted THz electric fields vs. time, emitted by the bare Au layer on the prism (black), and by the SAM on the Au layer (red). (b) THz amplitude emitted by the bare Au surface, normalized, by dividing by the largest THz amplitude measured, as a function of the incident laser power. The red line is a guide to the eye.

Fig. 4
Fig. 4

(a) Emitted THz amplitude (red) from the SAM and the reflected pump power (blue) plotted as functions of angle θ. (b) THz amplitude emitted by the SAM (on the Au layer), normalized by dividing by the largest THz amplitude measured, as a function of the incident laser power. The red line is a guide to the eye.

Metrics