Abstract

We fabricated surface nanostructures with different pillar and cone shapes on glass substrates using thermally dewetted gold (Au) nanoparticles as etch masks by dry etching. Their optical total transmittance characteristics, together with theoretical predictions using rigorous coupled-wave analysis simulation, and wetting behaviors were investigated. The nanostructured glass substrates strongly enhanced the surface transmission compared to the flat glass substrate. The glass nanocones with a linearly graded effective refractive index profile exhibited better transmission properties than the glass nanopillars due to the lower surface reflectance, thus leading to higher average transmittance with increasing their height. For the glass nanocones with a period of 106 ± 39 nm at the Au film thickness of 5 nm, the higher average total transmittance (Tave) and solar weighted transmittance (SWT) of ~95.5 and ~95.8% at wavelengths of 300-1100 nm and the lower contact angle (θc) of 31° were obtained compared to the flat glass substrate (i.e., Tave~92.7%, SWT~92.7%, and θc~65°). The calculated total transmittance results showed a similar tendency to the experimental results.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [CrossRef] [PubMed]
  2. A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
    [CrossRef]
  3. C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
    [CrossRef]
  4. H. Mase, M. Kondo, and A. Matsuda, “Microcrystalline silicon solar cells fabricated on polymer substrate,” Sol. Energy Mater. Sol. Cells 74(1-4), 547–552 (2002).
    [CrossRef]
  5. S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
    [CrossRef]
  6. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
    [CrossRef] [PubMed]
  7. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
    [CrossRef]
  8. N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97(19), 191912 (2010).
    [CrossRef]
  9. B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
    [CrossRef] [PubMed]
  10. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  11. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
    [CrossRef] [PubMed]
  12. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  13. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
    [CrossRef]
  14. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  15. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
    [CrossRef]
  16. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [CrossRef]
  17. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  18. J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
    [CrossRef]
  19. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
    [CrossRef]
  20. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
    [CrossRef]
  21. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
    [CrossRef] [PubMed]
  22. J. W. Leem, K. S. Chung, and J. S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys. 12(1), 291–298 (2012).
    [CrossRef]
  23. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
    [CrossRef] [PubMed]
  24. H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 274–277 (2004).
    [CrossRef]
  25. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
    [CrossRef] [PubMed]
  26. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
    [CrossRef] [PubMed]
  27. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).
  28. G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
    [CrossRef] [PubMed]
  29. L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
    [CrossRef]
  30. J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29(6), 455–466 (2008).
    [CrossRef]
  31. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev. 1(1), 1–21 (2000).
    [CrossRef]
  32. P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
    [CrossRef]
  33. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
    [CrossRef]
  34. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  35. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
    [CrossRef] [PubMed]
  36. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
    [CrossRef]
  37. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
    [CrossRef] [PubMed]
  38. SOPRA, http://www.sopra-sa.com , Accessed 1 Oct. (2011).
  39. H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2(2), 92–99 (1995).
    [CrossRef]
  40. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
    [CrossRef]
  41. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  42. S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc. 51(94), 1501–1506 (2007).
    [CrossRef]
  43. G. P. Montgomery and N. A. Vaz, “Contrast ratios of polymer-dispersed liquid crystal films,” Appl. Opt. 26(4), 738–743 (1987).
    [CrossRef] [PubMed]
  44. NREL’s Renewable Resource Data Center, http://rredc.nrel.gov/solar/spectra/am1.5 , Accessed 15 Oct. (2011).
  45. E. Hecht, Optic 4th ed. (Addison Wesley, 2002), Chap. 10.
  46. Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41(10), 771–777 (2009).
    [CrossRef]
  47. R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
    [CrossRef]

2012 (1)

J. W. Leem, K. S. Chung, and J. S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys. 12(1), 291–298 (2012).
[CrossRef]

2011 (7)

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[CrossRef] [PubMed]

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[CrossRef] [PubMed]

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
[CrossRef] [PubMed]

2010 (7)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97(19), 191912 (2010).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41(10), 771–777 (2009).
[CrossRef]

2008 (4)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29(6), 455–466 (2008).
[CrossRef]

2007 (5)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc. 51(94), 1501–1506 (2007).
[CrossRef]

2006 (2)

P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
[CrossRef]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

2005 (1)

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

2004 (3)

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 274–277 (2004).
[CrossRef]

2002 (1)

H. Mase, M. Kondo, and A. Matsuda, “Microcrystalline silicon solar cells fabricated on polymer substrate,” Sol. Energy Mater. Sol. Cells 74(1-4), 547–552 (2002).
[CrossRef]

2000 (2)

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev. 1(1), 1–21 (2000).
[CrossRef]

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

1999 (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

1996 (1)

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

1995 (1)

H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2(2), 92–99 (1995).
[CrossRef]

1987 (1)

1981 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

1936 (1)

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
[CrossRef]

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Auzelyte, V.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Bae, B. J.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Bakhru, H.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97(19), 191912 (2010).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Bhatia, C. S.

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Brunner, R.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Chang, D.-H.

S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc. 51(94), 1501–1506 (2007).
[CrossRef]

Chang, S. J.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Chang, Y. C.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, C. C.

Chen, I. C.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Cheng, Y. J.

Chiu, C. H.

Choi, E. S.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Choi, H. J.

Choi, K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Choi, K. W.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Chung, K. S.

J. W. Leem, K. S. Chung, and J. S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys. 12(1), 291–298 (2012).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Danner, A. J.

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

David, C.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Ekinci, Y.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Fujimura, S.

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

Fujishima, A.

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev. 1(1), 1–21 (2000).
[CrossRef]

Gaylord, T. K.

Ha, J. H.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[CrossRef] [PubMed]

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Han, K. S.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Helgert, M.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Hong, E. J.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Hong, S. H.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Howarter, J. A.

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29(6), 455–466 (2008).
[CrossRef]

Hsu, C. F.

P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, C. L.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Hsu, S. H.

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, M.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97(19), 191912 (2010).
[CrossRef]

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Hwangbo, C. K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc. 51(94), 1501–1506 (2007).
[CrossRef]

Iwata, K.

H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2(2), 92–99 (1995).
[CrossRef]

Jang, S. J.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Joo, D. H.

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

Kadakia, N.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97(19), 191912 (2010).
[CrossRef]

Kikuta, H.

H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2(2), 92–99 (1995).
[CrossRef]

Kim, B. I.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Kim, D. Y.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 274–277 (2004).
[CrossRef]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Ko, Y. H.

Kondo, M.

H. Mase, M. Kondo, and A. Matsuda, “Microcrystalline silicon solar cells fabricated on polymer substrate,” Sol. Energy Mater. Sol. Cells 74(1-4), 547–552 (2002).
[CrossRef]

Koo, H. Y.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 274–277 (2004).
[CrossRef]

Kuo, H. C.

Lalanne, P.

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lee, H.

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Lee, H. S.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Lee, J. M.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Lee, Y. T.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[CrossRef] [PubMed]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41(10), 771–777 (2009).
[CrossRef]

Leem, J. W.

J. W. Leem, K. S. Chung, and J. S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys. 12(1), 291–298 (2012).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Li, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Li, P. C.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Li, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Lin, T. S.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Lin, Y. R.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Liu, C. C.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Liu, C. Y.

P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
[CrossRef]

Liu, N. W.

P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
[CrossRef]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lohmüller, T.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Lu, T. C.

Lu, T. H.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Mase, H.

H. Mase, M. Kondo, and A. Matsuda, “Microcrystalline silicon solar cells fabricated on polymer substrate,” Sol. Energy Mater. Sol. Cells 74(1-4), 547–552 (2002).
[CrossRef]

Matsuda, A.

H. Mase, M. Kondo, and A. Matsuda, “Microcrystalline silicon solar cells fabricated on polymer substrate,” Sol. Energy Mater. Sol. Cells 74(1-4), 547–552 (2002).
[CrossRef]

Miyadera, T.

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

Mlynek, J.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Moharam, M. G.

Montgomery, G. P.

Morris, G. M.

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

Naczas, S.

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97(19), 191912 (2010).
[CrossRef]

Nealey, P. F.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Ochi, H.

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

Päivänranta, B.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Park, C. Y.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Park, G. C.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Park, S. H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Park, Y. J.

S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc. 51(94), 1501–1506 (2007).
[CrossRef]

Parker, A. R.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Rao, T. N.

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev. 1(1), 1–21 (2000).
[CrossRef]

Sahoo, P. K.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Sakhuja, M.

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

Sato, S.

Schäffer, E.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Sharma, P.

P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
[CrossRef]

Solak, H. H.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Son, J.

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

Song, Y. M.

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[CrossRef] [PubMed]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41(10), 771–777 (2009).
[CrossRef]

Spatz, J. P.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Steiner, U.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Stuen, K. O.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Sugimoto, A.

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

Sun, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Sundermann, M.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Tocce, E.

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Townley, H. E.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

Tryk, D. A.

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev. 1(1), 1–21 (2000).
[CrossRef]

Tsai, S. Y.

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Tsuchida, M.

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

Vaz, N. A.

Verma, L. K.

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

Walheim, S.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Wang, B.

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Wang, S. C.

Wang, Y. L.

P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
[CrossRef]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Wenzel, R. N.

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
[CrossRef]

Woo, S.-H.

S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc. 51(94), 1501–1506 (2007).
[CrossRef]

Xu, W.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Yang, B.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Yang, H.

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Ye, M.

Yi, D. K.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 274–277 (2004).
[CrossRef]

Yoo, S. J.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 274–277 (2004).
[CrossRef]

Yoshida, A.

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

Yoshida, H.

H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2(2), 92–99 (1995).
[CrossRef]

Youngblood, J. P.

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29(6), 455–466 (2008).
[CrossRef]

Yu, J. S.

J. W. Leem, K. S. Chung, and J. S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys. 12(1), 291–298 (2012).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express 19(27), 26308–26317 (2011).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Yu, P.

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Zeng, H. C.

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

ACS Nano (1)

B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano 5(3), 1860–1864 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (3)

H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 274–277 (2004).
[CrossRef]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.) 21, 4731–4734 (2009).

Appl. Opt. (2)

Appl. Phys. B (2)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B 100(4), 891–896 (2010).
[CrossRef]

Appl. Phys. Lett. (5)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97(19), 191912 (2010).
[CrossRef]

P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett. 89(16), 163110 (2006).
[CrossRef]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett. 416(1-3), 75–78 (2005).
[CrossRef]

Curr. Appl. Phys. (1)

J. W. Leem, K. S. Chung, and J. S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys. 12(1), 291–298 (2012).
[CrossRef]

Electron. Mater. Lett. (1)

S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett. 5(1), 39–42 (2009).
[CrossRef]

Endeavour (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004).
[CrossRef]

Ind. Eng. Chem. (1)

R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
[CrossRef]

J. Kor. Phys. Soc. (1)

S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc. 51(94), 1501–1506 (2007).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol. 11(7), 6152–6156 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. Photochem. Rev. (1)

A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev. 1(1), 1–21 (2000).
[CrossRef]

Macromol. Rapid Commun. (1)

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29(6), 455–466 (2008).
[CrossRef]

Mater. Sci. Eng. A (1)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Nano Lett. (1)

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[CrossRef]

Nat. Nanotechnol. (2)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2(6), 347–353 (2007).
[CrossRef] [PubMed]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (4)

Opt. Quantum Electron. (1)

Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41(10), 771–777 (2009).
[CrossRef]

Opt. Rev. (1)

H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev. 2(2), 92–99 (1995).
[CrossRef]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996).
[CrossRef]

Renew. Energy (1)

L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy 36(9), 2489–2493 (2011).
[CrossRef]

Science (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

H. Mase, M. Kondo, and A. Matsuda, “Microcrystalline silicon solar cells fabricated on polymer substrate,” Sol. Energy Mater. Sol. Cells 74(1-4), 547–552 (2002).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

Other (3)

SOPRA, http://www.sopra-sa.com , Accessed 1 Oct. (2011).

NREL’s Renewable Resource Data Center, http://rredc.nrel.gov/solar/spectra/am1.5 , Accessed 15 Oct. (2011).

E. Hecht, Optic 4th ed. (Addison Wesley, 2002), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of process steps for the fabrication of pillar- and cone-shaped nanostructures on glass substrates.

Fig. 2
Fig. 2

Contour plots of the calculated total transmittance variation as a function of wavelength for (i) height and (ii) incident angle of light in glass nanostructures with (a) pillar and (b) cone geometries. The three-dimensional simulation models of the corresponding structures used in this calculation are shown in the insets, respectively.

Fig. 3
Fig. 3

Measured total transmittance spectra of fabricated glass (a) nanopillars and (b) nanocones with different heights using the thermally dewetted Au nanomask patterns of 10 nm-thick Au film after RTA of 600 °C. The insets show the SEM images of the corresponding structures.

Fig. 4
Fig. 4

(a) Average diameter and density of nanoparticles and average period of nanopatterns as a function of Au film thickness and SEM images of (b) thermally dewetted Au nanoparticles as mask patterns (top-view) after RTA of 600 °C for 3 min and (c) fabricated glass nanostructures (30°-tilted oblique view) for different Au film thicknesses of (i) 5 nm, (ii) 10 nm, and (iii) 15 nm. The side-view SEM images of the corresponding structures are shown in the insets of (c). The side-view SEM image of the glass nanostructure for the 10 nm-thick Au film is shown in the inset of Fig. 2(a)

Fig. 5
Fig. 5

(a) Measured total transmittance spectra of the fabricated glass nanostructures using thermally dewetted Au nanoparticles after RTA of 600 °C for 3 min for different Au film thicknesses of 5, 10, and 15 nm and (b) contour plots of calculated total transmittance as a function of period for glass (i) nanopillars and (ii) nanocones with a height of 250 nm at wavelengths of 350-1100 nm. The measured total reflectance spectra of the corresponding glass nanostructures are also shown in the inset of (a).

Fig. 6
Fig. 6

Photograph images of (a) the flat glass substrate and fabricated glass nanostructures for different Au film thicknesses of 5, 10, and 15 nm and (b) water droplets on the samples.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r= (Hz) 1/ O T +R and x 2 + y 2 = r 2 (0zH),
SWT= 300nm 1100nm S(λ)T(λ) 300nm 1100nm S(λ) ,
sin θ r,m = mλ Λn +sin θ i ,

Metrics