Abstract

An electric field sensor based on the indirect bonding of submicrometer thin films of lithium niobate to silicon microring resonators is presented using benzocyclobutene as an intermediate bonding layer. The hybrid material system combines the electro-optic functionality of lithium niobate with the high-index contrast of silicon waveguides, enabling compact and metal-free electric field sensors. A sensor is designed and fabricated using ion-sliced z-cut lithium niobate as the top cladding of a 20 μm radius silicon microring resonator. The optical quasi transverse magnetic mode is used to access the largest electro-optic coefficient in the lithium niobate. Optical characterization of the hybrid device results in a measured loaded quality factor of 13,000 in the infrared. Operation of the device as an electric field sensor is demonstrated by detecting the fringing fields from a microstrip electrical circuit operating at 1.86 GHz. The demonstrated sensitivity to electric fields is 4.5 V m-1 Hz-1/2.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30(2-3), 45–73 (2006).
    [CrossRef]
  2. K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
    [CrossRef]
  3. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002).
    [CrossRef]
  4. H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron, E 90-C, 436–442 (2007).
  5. R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
    [CrossRef]
  6. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
    [CrossRef]
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [CrossRef]
  8. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [CrossRef] [PubMed]
  9. J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
    [CrossRef]
  10. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011).
    [CrossRef] [PubMed]
  11. B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
    [CrossRef]
  12. F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006).
    [CrossRef]
  13. K. K. Wong, Properties of Lithium Niobate (INSPEC, London, 2002).
  14. M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
    [CrossRef]
  15. A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
    [CrossRef]
  16. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [CrossRef] [PubMed]
  17. P. Sun and R. M. Reano, “Low-power optical bistability in a free-standing silicon ring resonator,” Opt. Lett. 35(8), 1124–1126 (2010).
    [CrossRef] [PubMed]

2011

2010

2009

2007

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron, E 90-C, 436–442 (2007).

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[CrossRef]

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

2006

V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30(2-3), 45–73 (2006).
[CrossRef]

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006).
[CrossRef]

2002

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[CrossRef]

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002).
[CrossRef]

2000

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

1999

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

1997

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Agarwal, A. M.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Ayazi, A.

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[CrossRef]

Bakhru, H.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

Chen, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Dalton, L. R.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

David, G.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

Davis, K.

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
[CrossRef]

De Leonardis, F.

V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30(2-3), 45–73 (2006).
[CrossRef]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Dell'Olio, F.

V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30(2-3), 45–73 (2006).
[CrossRef]

Evans, C.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

Foresi, J. S.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Gutmann, R. J.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006).
[CrossRef]

Hau, S.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Houshmand, B.

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[CrossRef]

Hsu, R. C. J.

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[CrossRef]

Hu, H.

Hubert, M.

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
[CrossRef]

Hudson, A.

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
[CrossRef]

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002).
[CrossRef]

Jalali, B.

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[CrossRef]

Jazbinšek, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[CrossRef]

Jen, A. K.-Y.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Katehi, L. P. B.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

Kim, G.-D.

Kim, W.-J.

Kimerling, L. C.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Kumar, A.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

Lee, S.-S.

Lee, W.-G.

Lee, Y. S.

Levy, M.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

Liao, L.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Lim, D. R.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Lu, J.-Q.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006).
[CrossRef]

Luo, J.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Maleki, L.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002).
[CrossRef]

Martin, S.

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
[CrossRef]

Matsko, A. B.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002).
[CrossRef]

Nagatsuma, T.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron, E 90-C, 436–442 (2007).

Niklaus, F.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006).
[CrossRef]

Osgood, R. M.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

Papapolymerou, I.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30(2-3), 45–73 (2006).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Pyajt, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Radojevic, A. M.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

Reano, R. M.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Ricken, R.

Savchenkov, A. A.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002).
[CrossRef]

Shi, Z.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Shimizu, N.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron, E 90-C, 436–442 (2007).

Sohler, W.

Steier, W. H.

Stemme, G.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006).
[CrossRef]

Sun, H.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

Sun, P.

Tian, C.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

Togo, H.

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron, E 90-C, 436–442 (2007).

Whitaker, J. F.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

Yacobi, B. G.

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
[CrossRef]

Yang, K.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

Yook, J.-G.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

Zgonik, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[CrossRef]

Appl. Phys. B

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[CrossRef]

Appl. Phys. Lett.

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002).
[CrossRef]

IEEE Sens. J.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000).
[CrossRef]

IEICE Trans. Electron, E

H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron, E 90-C, 436–442 (2007).

J. Appl. Phys.

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002).
[CrossRef]

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006).
[CrossRef]

Nat. Photonics

R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997).
[CrossRef]

Prog. Quantum Electron.

V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30(2-3), 45–73 (2006).
[CrossRef]

Other

K. K. Wong, Properties of Lithium Niobate (INSPEC, London, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of an electric field sensor based on the indirect bonding of a lithium niobate thin film to a silicon microring resonator. For clarity, a PECVD SiO2 top-cladding layer is not shown. (b) SEM of the cross-section of the sensor structure.

Fig. 2
Fig. 2

Optical electric field distributions in the hybrid Si/LiNbO3 sensor for the quasi-TM (Ey component) and quasi-TE (Ex component) modes at 1550 nm wavelength. Material boundaries are indicated by the white dashed lines and the material regions are indicated in the inset.

Fig. 3
Fig. 3

Fabrication process of electric field sensor: (a) Silicon strip waveguide ring resonator patterned on SOI wafer using electron beam lithography and plasma etch, (b) spin-coat of BCB, (c) indirect bonding of LiNbO3 thin film, (d) plasma etch of BCB, (e) deposition of PECVD SiO2, (f) fabrication of cantilever couplers.

Fig. 4
Fig. 4

(a) Measurement setup; (b) Top-view optical micrograph of fabricated electric field sensor.

Fig. 5
Fig. 5

(a) Measured optical transmission of the electric field sensor; (b) Magnitude of measured microwave VNA S21 RF scattering parameter versus CW laser wavelength; (c) Corresponding phase of RF S21 versus CW laser wavelength.

Metrics