Abstract

Low threshold and widely tunable InAs/GaAs quantum-dot lasers are implemented with grating-coupled external-cavity arrangement. Throughout the tuning range of 130 nm, from 1160 to 1290 nm, the threshold current density is not more than 0.9 kA/cm2 and no noticeable threshold jump is observed. For a shorter-cavity device, the injection current is kept at a record low value of 90 mA but the tuning range is further extended to 150 nm, from 1143 to 1293 nm. The effect of cavity length on the tuning characteristics is discussed and the strategy for design and optimization of multilayer quantum-dot structure is also proposed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, and Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22(2), 567–573 (2004).
    [CrossRef]
  2. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [CrossRef] [PubMed]
  3. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
    [CrossRef]
  4. M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
    [CrossRef]
  5. H. Tabuchi and H. Ishikawa, “External grating tunable MQWlaser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
    [CrossRef]
  6. C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
    [CrossRef]
  7. H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
    [CrossRef]
  8. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
    [CrossRef]
  9. X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
    [CrossRef] [PubMed]
  10. K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers,” Opt. Express 18(18), 19438–19443 (2010).
    [CrossRef] [PubMed]
  11. L. H. Li, M. Rossetti, and A. Fiore, “Chirped multiple InAs quantum dot structure for wide spectrum device applications,” J. Cryst. Growth 278(1-4), 680–684 (2005).
    [CrossRef]
  12. G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
    [CrossRef]
  13. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
    [CrossRef]
  14. A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
    [CrossRef]
  15. M. W. Fleming and A. Mooradian, “Spectral Characteristics of External-Cavity Controlled Semiconductor Lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
    [CrossRef]
  16. P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
    [CrossRef]
  17. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
    [CrossRef]
  18. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
    [CrossRef]
  19. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
    [CrossRef]
  20. A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
    [CrossRef]

2010

2008

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

2006

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

2005

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

L. H. Li, M. Rossetti, and A. Fiore, “Chirped multiple InAs quantum dot structure for wide spectrum device applications,” J. Cryst. Growth 278(1-4), 680–684 (2005).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[CrossRef] [PubMed]

2004

2001

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

2000

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

1999

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

1991

C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
[CrossRef]

1990

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

H. Tabuchi and H. Ishikawa, “External grating tunable MQWlaser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

1981

M. W. Fleming and A. Mooradian, “Spectral Characteristics of External-Cavity Controlled Semiconductor Lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[CrossRef]

Abe, M.

Akiyama, T.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Alferov, Z. I.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Arakawa, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Bagley, M.

C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
[CrossRef]

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Berg, T. W.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Bimberg, D.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Bischoff, S.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

Cable, A. E.

Calligari, V.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

Cataluna, M. A.

Chang, C. Y.

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Chek-Al-Kar, D.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

Chen, J. X.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

Chi, J. Y.

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Cooper, D. M.

C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
[CrossRef]

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Devlin, E. J.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Ebe, H.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Egorov, A. Y.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Eliseev, P.

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

Elton, D. J.

C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
[CrossRef]

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Fedorova, K. A.

Fiore, A.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

L. H. Li, M. Rossetti, and A. Fiore, “Chirped multiple InAs quantum dot structure for wide spectrum device applications,” J. Cryst. Growth 278(1-4), 680–684 (2005).
[CrossRef]

Fleming, M. W.

M. W. Fleming and A. Mooradian, “Spectral Characteristics of External-Cavity Controlled Semiconductor Lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[CrossRef]

Fuchs, B.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Fujimoto, J. G.

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[CrossRef] [PubMed]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

Hashimoto, T.

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[CrossRef]

Hibino, Y.

Huber, R.

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Ishikawa, H.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

H. Tabuchi and H. Ishikawa, “External grating tunable MQWlaser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

Jiang, J. Y.

Jin, P.

Kasahara, R.

Kop’ev, P. S.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Kopchatov, V. I.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Kovsh, A. R.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Krestnikov, I.

Ledentsov, N. N.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Lee, C. P.

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Lester, L. F.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

Li, H.

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Li, L. H.

L. H. Li, M. Rossetti, and A. Fiore, “Chirped multiple InAs quantum dot structure for wide spectrum device applications,” J. Cryst. Growth 278(1-4), 680–684 (2005).
[CrossRef]

Lin, G.

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Lin, K. F.

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Liu, G. T.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

Livshits, D.

Lunev, A. V.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Lv, X. Q.

Magnusdottir, I.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Malloy, K. J.

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Markus, A.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

Maximov, M. V.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Mooradian, A.

M. W. Fleming and A. Mooradian, “Spectral Characteristics of External-Cavity Controlled Semiconductor Lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[CrossRef]

Mørk, J.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Nakata, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Newell, T. C.

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

Otsubo, K.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

Perrin, S.

C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
[CrossRef]

Rafailov, E. U.

Rossetti, M.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

L. H. Li, M. Rossetti, and A. Fiore, “Chirped multiple InAs quantum dot structure for wide spectrum device applications,” J. Cryst. Growth 278(1-4), 680–684 (2005).
[CrossRef]

Sakamoto, A.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[CrossRef]

Scollo, R.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

Seltzer, C. P.

C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
[CrossRef]

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Shernyakov, Y. M.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Spurdens, P. C.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Stintz, A.

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

Sugawara, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Tabuchi, H.

H. Tabuchi and H. Ishikawa, “External grating tunable MQWlaser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

Tanaka, T.

Tohmori, Y.

Tsatsul’nikov, A. F.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Tseng, W. C.

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Ustinov, V. M.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Varangis, P. M.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Wang, W. Y.

Wang, Z. G.

Weber, K. P.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[CrossRef]

Wickes, H. J.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Wojtkowski, M.

Wyatt, R.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

Xuan, R.

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Zhukov, A. E.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Electron. Lett.

M. Bagley, R. Wyatt, D. J. Elton, H. J. Wickes, P. C. Spurdens, C. P. Seltzer, D. M. Cooper, and E. J. Devlin, “242nm continuous tuning from a GRIN-SC-MQW-BH InGaAsP laser in an extended cavity,” Electron. Lett. 26(4), 267–269 (1990).
[CrossRef]

H. Tabuchi and H. Ishikawa, “External grating tunable MQWlaser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

C. P. Seltzer, M. Bagley, D. J. Elton, S. Perrin, and D. M. Cooper, “160 nm continuous tuning of an MQW laser in an external cavity across the entire 1.3 µm communication window,” Electron. Lett. 27(1), 95–96 (1991).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Lowthreshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

IEEE J. Quantum Electron.

M. W. Fleming and A. Mooradian, “Spectral Characteristics of External-Cavity Controlled Semiconductor Lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable Grating-Coupled Laser Oscillation and Spectral Hole Burning in an InAs Quantum-Dot Laser Diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

J. Appl. Phys.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100(11), 113104 (2006).
[CrossRef]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97(4), 043523 (2005).
[CrossRef]

J. Cryst. Growth

L. H. Li, M. Rossetti, and A. Fiore, “Chirped multiple InAs quantum dot structure for wide spectrum device applications,” J. Cryst. Growth 278(1-4), 680–684 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Phys. Rev. B

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Proc. SPIE

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, and J. Y. Chi, “Novel chirped multilayer quantum-dot lasers,” Proc. SPIE 6997, 69970R, 69970R-8 (2008).
[CrossRef]

Rev. Sci. Instrum.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[CrossRef]

Semicond. Sci. Technol.

A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol. 14(1), 118–123 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

RT PL for the GS and ES emission peaks of a single QD layer as function of the thickness of InGaAs SRL.

Fig. 2
Fig. 2

The arrangement of external cavity laser in Littrow configuration.

Fig. 3
Fig. 3

Modal gain and lasing wavelength as function of threshold current density for chirped multilayer QD lasers.

Fig. 4
Fig. 4

(a) L-I-V characteristics of solitary AR/HR coated QD lasers for three cavity lengths of 1.5, 2.0 and 3.0 mm. (b) The threshold lasing spectrum for 2-mm QD emitter before and after facet coatings.

Fig. 5
Fig. 5

Lasing spectra of 2-mm QD ECL, tuned across 1160-1290 nm wavelength at constant current of 100 mA.

Fig. 6
Fig. 6

(a) Threshold current and (b) threshold current density of QD ECLs as function of tuning wavelength for three cavity lengths of 1.5, 2.0 and 3.0 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ GS (d)=( 1150+38×d2.0× d 2 )±10 (nm)
λ ES (d)=( 1088+31×d1.3× d 2 )±10 (nm)

Metrics