Abstract

We report the fabrication of single mode quantum cascade lasers using a shallow-etched distributed Bragg reflector as frequency selective element. Quasi-continuous single mode tuning over 15 cm−1 at room temperature and 25 cm−1 via temperature tuning at Peltier temperatures is demonstrated. The behavior of both electro-optic and spectral characteristics under variation of the segment currents is analyzed, showing a maximum peak output power at room temperature of 600 mW. Thermal crosstalk between the laser segments is investigated. The spectral resolution of a gas absorption experiment is determined to be better than 0.0078 cm−1.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
    [CrossRef]
  2. C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
    [CrossRef]
  3. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
    [CrossRef]
  4. P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
    [CrossRef]
  5. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
    [CrossRef]
  6. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
    [CrossRef]
  7. Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
    [CrossRef]
  8. E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
    [CrossRef]
  9. L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
    [CrossRef]
  10. P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
    [CrossRef]
  11. Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity,” Appl. Phys. Lett. 96(17), 171104 (2010).
    [CrossRef]
  12. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
    [CrossRef]
  13. J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett. 91(7), 071104 (2007).
    [CrossRef]
  14. S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
    [CrossRef]
  15. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995), Chap. 3.
  16. T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93(6), 3158–3160 (2003).
    [CrossRef]
  17. The HITRAN database, http://www.cfa.hitran.com/

2011 (3)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[CrossRef]

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

2010 (4)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity,” Appl. Phys. Lett. 96(17), 171104 (2010).
[CrossRef]

2007 (2)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett. 91(7), 071104 (2007).
[CrossRef]

2006 (1)

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

2004 (1)

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[CrossRef]

2003 (1)

T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93(6), 3158–3160 (2003).
[CrossRef]

2000 (1)

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

1997 (2)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Arakawa, Y.

Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity,” Appl. Phys. Lett. 96(17), 171104 (2010).
[CrossRef]

Arnold, C. B.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Bai, Y.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[CrossRef]

Bailargeon, J. N.

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Bandyopadhyay, N.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[CrossRef]

Beck, M.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[CrossRef]

Belkin, M. A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Bertagnolli, E.

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

Beyer, T.

T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93(6), 3158–3160 (2003).
[CrossRef]

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Braun, M.

T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93(6), 3158–3160 (2003).
[CrossRef]

Capasso, F.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Chen, J.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

Cho, A. Y.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Chu, S. N. G.

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Corzine, S.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Diehl, L.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Dirisu, A. O.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Faist, J.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Fan, J.-Y.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Forchel, A.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett. 91(7), 071104 (2007).
[CrossRef]

Friedl, J.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

Fuchs, P.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

Gianordoli, S.

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

Gini, E.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[CrossRef]

Gmachl, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Gmachl, C. F.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Gornik, E.

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

Höfler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Höfling, S.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett. 91(7), 071104 (2007).
[CrossRef]

Howard, S. S.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

Hvozdara, L.

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

Iwamoto, S.

Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity,” Appl. Phys. Lett. 96(17), 171104 (2010).
[CrossRef]

Koeth, J.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

Lambrecht, A.

T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93(6), 3158–3160 (2003).
[CrossRef]

Lee, B. G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Liu, Z.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Lu, Q. Y.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[CrossRef]

Lugstein, A.

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[CrossRef]

Mujagic, E.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

Nähle, L.

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett. 91(7), 071104 (2007).
[CrossRef]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Pflügl, C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

Razeghi, M.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[CrossRef]

Schrenk, W.

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

Schwarzer, C.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

Semmel, J.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett. 91(7), 071104 (2007).
[CrossRef]

Seufert, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

Sirtori, C.

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Sivco, D. L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

Slivken, S.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[CrossRef]

Song, S.

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Strasser, G.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

Unterrainer, K.

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

Wakayama, Y.

Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity,” Appl. Phys. Lett. 96(17), 171104 (2010).
[CrossRef]

Wang, X.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Worschech, L.

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

Yao, Y.

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

Appl. Phys. Lett. (12)

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97(8), 081115 (2010).
[CrossRef]

E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011).
[CrossRef]

L. Hvozdara, A. Lugstein, S. Gianordoli, W. Schrenk, G. Strasser, K. Unterrainer, E. Bertagnolli, and E. Gornik, “Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser,” Appl. Phys. Lett. 77(8), 1077–1079 (2000).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett. 97(18), 181111 (2010).
[CrossRef]

Y. Wakayama, S. Iwamoto, and Y. Arakawa, “Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity,” Appl. Phys. Lett. 96(17), 171104 (2010).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[CrossRef]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett. 91(7), 071104 (2007).
[CrossRef]

S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98(18), 181106 (2011).
[CrossRef]

P. Fuchs, J. Semmel, J. Friedl, S. Höfling, J. Koeth, L. Worschech, and A. Forchel, “Distributed feedback quantum cascade lasers at 13.8 µm,” Appl. Phys. Lett. 98(21), 211118 (2011).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Gmachl, J. Faist, J. N. Bailargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9(8), 1090–1092 (1997).
[CrossRef]

J. Appl. Phys. (1)

T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93(6), 3158–3160 (2003).
[CrossRef]

Semicond. Sci. Technol. (1)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

Other (2)

The HITRAN database, http://www.cfa.hitran.com/

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic drawing of the DBR-QCL with two segments and related currents. (b) Sequence of pulsed currents IDBR (black line) and Igain (red line).

Fig. 2
Fig. 2

(a) Tuning of a DBR-QCL emitting around 10.3 µm with LDBR = 2 mm, Lgain = 3 mm and a ridge width of 25 µm. Temperature tuning (triangles) between −35°C and 120°C is applied to enhance the tuning range and fill the gap at IDBR = 1.4A. (b) Pure current tuning of a DBR-QCL emitting around 13.5 µm with LDBR = 2 mm, Lgain = 2 mm and a ridge width of 28 µm.

Fig. 3
Fig. 3

(a) Characteristic electro-optic curves of the DBR-QCL emitting at 10.3 µm for five equidistant values of IDBR. (b) Slope efficiency and threshold current density plotted over IDBR. The driving parameters are the same as given in the main graph of Fig. 2(a).

Fig. 4
Fig. 4

(a) Tuning (continuous lines) and temperature evolution of DBR-segment (dashed lines) vs. IDBR for different values of τDBR. (b) Time resolved evolution of the temperature of the DBR-segment for different values of IDBR.

Fig. 5
Fig. 5

(a) Temperature rise of the DBR-segment in dependence of IDBR (continuous black line) determined from tuning via IDBR (dashed line). Current heating rates dTDBR/dIDBR (blue straight line) and dTcavity/dIDBR (red straight line) are plotted as well as the values for ΔTDBR/ΔIDBR (green squares) extracted from the tuning of single longitudinal cavity modes for every step of the staircase. (b) Emission wavenumber vs. Iphase at constant IDBR = 1370 mA and other parameters as given in Fig. 2(b).

Fig. 6
Fig. 6

Time dependent signals from the gain current probe (dotted line) and HgCdTe detector (continuous line) are plotted in the left column next to corresponding FTIR spectra for different values of IDBR in the right column. The fringe spacing in the detector signal corresponds to the free spectral range of 0.049 cm−1 of a Ge-etalon which was inserted in the beam path. Arrows indicate the position of mode jumps. Due to the spectrum acquisition time of a few seconds the FTIR spectra exhibit the integrated signal of both modes for IDBR = 2260 and 2280 mA.

Fig. 7
Fig. 7

(a) Absorption features of C2H4 around 10.3 µm taken from the HITRAN database [17]. (b) Magnification of the absorption features chosen for the gas sensing experiment. (c) Time dependent detector signals of a 160 ns laser pulse recorded as single-shots without averaging: The raw pulse shape, a signal modulated with the transmission of an etalon and the signal acquired with a C2H4 gas cell in the beam path is plotted. The fringe spacing in the dashed curve corresponds to the free spectral range of 0.049 cm−1 of a Ge-etalon which was inserted in the beam path and indicates a chirp-rate of 0.19 cm−1/100ns. (d) Magnification of two closely spaced absorption peaks.

Metrics