Abstract

Praseodymium(Pr3+)-doped fluorotellurite glasses were synthesized and broadband photoluminescence (PL) covering a wavelength range from 1.30 to 1.67 μm was observed under both 488 and 590 nm wavelength excitations. The broadband PL emission is mainly due to the radiative transition from the manifolds Pr3+: 1D2 to 1G4. The PL line-shape, band width, and lifetime were modified by the Pr3+ dopant concentration, and a quantum efficiency as high as 73.7% was achieved with Pr3+ dopant in a low concentration of 0.05 mol%. The good spectroscopic properties were also predicted by the Judd-Ofelt analysis, which indicates a stronger asymmetry and covalent bonding between the Pr3+ sites and the matrix lifgand field. The large stimulated emission cross-section, long measured lifetime, and broad emission bandwidth confirm the potential of the Pr3+-singly doped fluorotellurite glass as broadband luminescence sources for the broadband near-infrared optical amplifications and tunable lasers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
    [CrossRef] [PubMed]
  2. S. Kasap, “Optoelectronics,” in The Optics Encyclopedia, T. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber, eds. (Wiley-VCH, Weihein, Germany, 2004), Vol. 4., pp. 2237–2284.
  3. See, for example, M. J. F. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers (Second Edition, Revised and Expanded), (Marcel Dekker, New York, 2009), and references therein.
  4. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36(24), 5839–5843 (1997).
    [CrossRef] [PubMed]
  5. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
    [CrossRef] [PubMed]
  6. B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
    [CrossRef] [PubMed]
  7. C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81(8), 1414–1416 (2002).
    [CrossRef]
  8. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
    [CrossRef]
  9. J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
    [CrossRef]
  10. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
    [CrossRef]
  11. S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
    [CrossRef]
  12. L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
    [CrossRef] [PubMed]
  13. Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
    [CrossRef]
  14. D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
    [CrossRef]
  15. Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
    [CrossRef]
  16. B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+ codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D Appl. Phys. 44(28), 285404 (2011).
    [CrossRef]
  17. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
    [CrossRef]
  18. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008).
    [CrossRef] [PubMed]
  19. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
    [CrossRef]
  20. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  21. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
    [CrossRef]
  22. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
    [CrossRef]
  23. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, A. Jha, and S. Shen, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Opt. Express 14(22), 10452–10459 (2006).
    [CrossRef] [PubMed]
  24. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
    [CrossRef]
  25. B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region,” Opt. Express 18(18), 18805–18811 (2010).
    [CrossRef]
  26. B. Zhou, H. Lin, B. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
    [CrossRef] [PubMed]
  27. Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78(9), 1249–1251 (2001).
    [CrossRef]
  28. B. Zhou and E. Y. B. Pun, “Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses,” Opt. Lett. 36(15), 2958–2960 (2011).
    [CrossRef] [PubMed]
  29. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express 14(25), 12145–12150 (2006).
    [CrossRef] [PubMed]
  30. B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
    [CrossRef]
  31. M. Naftaly, C. Batchelor, and A. Jha, “Pr3+-doped fluoride glass for a 589 nm fiber laser,” J. Lumin. 91(3-4), 133–138 (2000).
    [CrossRef]
  32. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
    [CrossRef]
  33. R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24(7), 1517–1526 (2007).
    [CrossRef]
  34. V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
    [CrossRef]
  35. G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
    [CrossRef]
  36. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36(5), 740–742 (2011).
    [CrossRef] [PubMed]
  37. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  38. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  39. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
    [CrossRef]
  40. R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
    [CrossRef]
  41. L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys. 93(2-3), 455–460 (2005).
    [CrossRef]
  42. M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
    [CrossRef]
  43. M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48(10), 4774–4780 (1968).
    [CrossRef]
  44. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
    [CrossRef]
  45. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]

2011

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+ codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D Appl. Phys. 44(28), 285404 (2011).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

B. Zhou, H. Lin, B. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
[CrossRef] [PubMed]

B. Zhou and E. Y. B. Pun, “Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses,” Opt. Lett. 36(15), 2958–2960 (2011).
[CrossRef] [PubMed]

A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36(5), 740–742 (2011).
[CrossRef] [PubMed]

2010

2009

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

2008

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008).
[CrossRef] [PubMed]

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

2007

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

R. Jose, Y. Arai, and Y. Ohishi, “Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium,” J. Opt. Soc. Am. B 24(7), 1517–1526 (2007).
[CrossRef]

2006

2005

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys. 93(2-3), 455–460 (2005).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

2004

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
[CrossRef] [PubMed]

2003

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

2002

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[CrossRef]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81(8), 1414–1416 (2002).
[CrossRef]

2001

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78(9), 1249–1251 (2001).
[CrossRef]

2000

M. Naftaly, C. Batchelor, and A. Jha, “Pr3+-doped fluoride glass for a 589 nm fiber laser,” J. Lumin. 91(3-4), 133–138 (2000).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
[CrossRef] [PubMed]

1999

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

1997

1994

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
[CrossRef]

1968

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48(10), 4774–4780 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Afonso, C. N.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Aitken, B. G.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
[CrossRef]

Akada, T.

Alfano, R. R.

Alti, K.

Arai, Y.

Araki, T.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Bae, B. S.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Bao, F.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

Bartholomew, R. F.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
[CrossRef]

Batchelor, C.

M. Naftaly, C. Batchelor, and A. Jha, “Pr3+-doped fluoride glass for a 589 nm fiber laser,” J. Lumin. 91(3-4), 133–138 (2000).
[CrossRef]

Bigot, L.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Bookey, H. T.

Borrelli, N. F.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
[CrossRef]

Brocklesby, W. S.

Brown, G.

Bufetov, I. A.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Button, L. J.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
[CrossRef]

Bykov, A. B.

Cardinal, T.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

Cerullo, G.

Chalapathi, K.

Chen, B.

Chen, D.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Chen, G.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Chen, Q.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

Chiodo, N.

Choi, Y. G.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78(9), 1249–1251 (2001).
[CrossRef]

Debbarma, S.

Dharmadhikari, A. K.

Dharmadhikari, J. A.

Dianov, E. M.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

Dong, J.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

Douay, M.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Driesen, K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Ferraris, M.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

Fokine, M.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

Fujimoto, Y.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Gebavi, H.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

Génova, R. T.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Glodis, P. F.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Gonzalez-Platas, J.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Görller-Walrand, C.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Hector, J.

Heo, J.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78(9), 1249–1251 (2001).
[CrossRef]

Hewak, D. W.

Hondo, T.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Huang, L.

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
[CrossRef] [PubMed]

Hughes, M. A.

Inoue, S.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Jayakrishnan, C.

Jayasimhadri, M.

L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys. 93(2-3), 455–460 (2005).
[CrossRef]

Jha, A.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, A. Jha, and S. Shen, “Femtosecond laser inscription of optical waveguides in Bismuth ion doped glass,” Opt. Express 14(22), 10452–10459 (2006).
[CrossRef] [PubMed]

L. Huang, A. Jha, S. Shen, and X. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express 12(11), 2429–2434 (2004).
[CrossRef] [PubMed]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
[CrossRef] [PubMed]

M. Naftaly, C. Batchelor, and A. Jha, “Pr3+-doped fluoride glass for a 589 nm fiber laser,” J. Lumin. 91(3-4), 133–138 (2000).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Jose, G.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express 14(25), 12145–12150 (2006).
[CrossRef] [PubMed]

Jose, R.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Kar, A. K.

Kim, K. H.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78(9), 1249–1251 (2001).
[CrossRef]

Lahoz, F.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Lavin, V.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Lerouge, A.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Liao, G.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

Lin, A.

Lin, H.

Liu, X.

Lousteau, J.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

Lozano-Gorrin, A. D.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Martin, I. R.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Mathur, D.

Matsumoto, T.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Meng, X.

Milanese, D.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

Moorthy, L. R.

L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys. 93(2-3), 455–460 (2005).
[CrossRef]

Morinaga, K.

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Murata, T.

Murugan, G. S.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
[CrossRef] [PubMed]

M. Naftaly, C. Batchelor, and A. Jha, “Pr3+-doped fluoride glass for a 589 nm fiber laser,” J. Lumin. 91(3-4), 133–138 (2000).
[CrossRef]

Nakatsuka, M.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Nandi, P.

Nazabal, V.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Newhouse, M. A.

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
[CrossRef]

Nukui, A.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Nunez, P.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Ohishi, Y.

Osellame, R.

Park, B. J.

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78(9), 1249–1251 (2001).
[CrossRef]

Park, N.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Payne, D. N.

Peng, M.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Penninkhof, J. J.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Penty, R. V.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

Petricevic, V.

Polman, A.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81(8), 1414–1416 (2002).
[CrossRef]

Psaila, N. D.

Pun, E. Y. B.

Qiao, Y.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

Qiu, J.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Radhapathy, A.

L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys. 93(2-3), 455–460 (2005).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

Ravikumar, R. V. S. S. N.

L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys. 93(2-3), 455–460 (2005).
[CrossRef]

Razdobreev, I.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Rivero, C.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Rodriguez, V. D.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Rodriguez-Mendoza, U. R.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

Ruan, J.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

Ryasnyanskiy, A.

Seddon, A. B.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Seo, S. Y.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Serna, R.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Sharonov, M. Y.

Shen, C.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Shen, S.

Shin, J. H.

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Shraiman, B. I.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Stephen, M. J.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81(8), 1414–1416 (2002).
[CrossRef]

Suehara, S.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Suzuki, T.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

Takebe, H.

Tanabe, S.

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[CrossRef]

Thomas, G. A.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Thomson, R. R.

Tikhomirov, V. K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Todoroki, S.

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

Toulouse, J.

Truong, V. G.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Vickridge, I.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Wang, J.

Wang, Y.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

Weber, M. J.

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48(10), 4774–4780 (1968).
[CrossRef]

Wei, Y. Q.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

White, I. H.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

Wondraczek, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

Wonfor, A.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

Wu, B.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

Xiao, Z.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

Xing, J.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

Xu, Y.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Yang, D.

B. Zhou, H. Lin, D. Yang, and E. Y. B. Pun, “Emission of 1.38 μm and gain properties from Ho3+-doped low-phonon-energy gallate bismuth lead oxide glasses for fiber-optic amplifiers,” Opt. Lett. 35(2), 211–213 (2010).
[CrossRef] [PubMed]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Yoshino, K.

Yu, Y.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

Zeng, H.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

Zhang, Q.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

Zhou, B.

Zhou, S.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

Zhu, C.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81(8), 1414–1416 (2002).
[CrossRef]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, “Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide,” Appl. Phys. Lett. 82(20), 3445–3447 (2003).
[CrossRef]

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, “Broadband infrared emission from Er-Tm:Al2O3 thin films,” Appl. Phys. Lett. 87(11), 111103 (2005).
[CrossRef]

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced near-infrared emission from Ni2+ in Cr3+/Ni2+ codoped transparent glass ceramics,” Appl. Phys. Lett. 92(15), 151102 (2008).
[CrossRef]

Y. G. Choi, K. H. Kim, B. J. Park, and J. Heo, “1.6 μm emission from Pr3+: (3F3, 3F4)→3H4 transition in Pr3+- and Pr3+/Er3+-doped selenide glasses,” Appl. Phys. Lett. 78(9), 1249–1251 (2001).
[CrossRef]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[CrossRef]

C. R. Chim.

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[CrossRef]

Fusion Eng. Des.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Dong, Y. Q. Wei, A. Wonfor, R. V. Penty, I. H. White, J. Lousteau, G. Jose, and A. Jha, “Dual-pumped tellurite fiber amplifier and tunable laser using Er/Ce codoping scheme,” IEEE Photon. Technol. Lett. 23(11), 736–738 (2011).
[CrossRef]

M. A. Newhouse, R. F. Bartholomew, B. G. Aitken, L. J. Button, and N. F. Borrelli, “Pr-doped mixed-halide glasses for 1300 nm amplification,” IEEE Photon. Technol. Lett. 6(2), 189–191 (1994).
[CrossRef]

J. Alloy. Comp.

R. T. Génova, I. R. Martin, U. R. Rodriguez-Mendoza, F. Lahoz, A. D. Lozano-Gorrin, P. Nunez, J. Gonzalez-Platas, and V. Lavin, “Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass-ceramic. Applications of the standard and modified Judd-Ofelt theories,” J. Alloy. Comp. 380(1-2), 167–172 (2004).
[CrossRef]

J. Am. Ceram. Soc.

Y. Xu, Q. Zhang, C. Shen, D. Chen, H. Zeng, and G. Chen, “Broadband near-IR emission in Tm/Er-codoped GeS2-In2S3-based chalcohalide glasses,” J. Am. Ceram. Soc. 92(12), 3088–3091 (2009).
[CrossRef]

J. Appl. Phys.

D. Chen, Y. Wang, F. Bao, and Y. Yu, “Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics,” J. Appl. Phys. 101(11), 113511 (2007).
[CrossRef]

B. Zhou, E. Y. B. Pun, H. Lin, D. Yang, and L. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

M. J. Weber, “Spontaneous emission probabilities and quantum efficiencies for excited states of Pr3+ in LaF3,” J. Chem. Phys. 48(10), 4774–4780 (1968).
[CrossRef]

J. Lumin.

M. Naftaly, C. Batchelor, and A. Jha, “Pr3+-doped fluoride glass for a 589 nm fiber laser,” J. Lumin. 91(3-4), 133–138 (2000).
[CrossRef]

J. Non-Cryst. Solids

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, “Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties,” J. Non-Cryst. Solids 325(1-3), 85–102 (2003).
[CrossRef]

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonic application,” J. Non-Cryst. Solids 355(7), 447–452 (2009).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11–13), 2241–2245 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

B. Zhou and E. Y. B. Pun, “Broadband near-infrared photoluminescence and energy transfer in Tm3+/Er3+ codoped low phonon energy gallate bismuth lead glasses,” J. Phys. D Appl. Phys. 44(28), 285404 (2011).
[CrossRef]

Laser Phys. Lett.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Mater. Chem. Phys.

L. R. Moorthy, M. Jayasimhadri, A. Radhapathy, and R. V. S. S. N. Ravikumar, “Lasing properties of Pr3+-doped tellurofluorophosphate glasses,” Mater. Chem. Phys. 93(2-3), 455–460 (2005).
[CrossRef]

Nature

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Other

S. Kasap, “Optoelectronics,” in The Optics Encyclopedia, T. Brown, K. Creath, H. Kogelnik, M. A. Kriss, J. Schmit, and M. J. Weber, eds. (Wiley-VCH, Weihein, Germany, 2004), Vol. 4., pp. 2237–2284.

See, for example, M. J. F. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers (Second Edition, Revised and Expanded), (Marcel Dekker, New York, 2009), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical absorption spectrum of (0.5 mol%)Pr3+-doped fluorotellurite glass. Inset (a) shows the detail of the absorption bands corresponding to the manifolds (3P2,1I6+3P1,3P0); Inset (b) shows the Raman spectrum (pink line) of undoped fluorotellurite glass with Gaussian fitting (green lines).

Fig. 2
Fig. 2

(a) Near-IR PL spectra of Pr3+-doped fluorotellurite glasses under 488 nm wavelength excitation. (b) The FWHM bandwidth of the emissions at different Pr3+ dopant concentration. (c) Normalized PL spectra line-shapes and a comparison of them with the Pr3+: 3F4,33H4 absorption band (dotted line) located in this wavelength region. The 1.33 μm emission from the Pr3+: 1G43H5 transition is also displayed in Fig. 2(c).

Fig. 3
Fig. 3

(a) PLE spectra of Pr3+-doped fluorotellurite glass samples monitored at 1480 nm. (b) A comparison of the PLE spectrum and the absorption spectrum with respect to the 590 nm band for the 0.1 mol% Pr3+-doped sample. Inset of (b) shows the absorption/PLE spectra intensity ratio of the 3P0 band to the 1D2 band.

Fig. 4
Fig. 4

Visible PL spectra of Pr3+-doped fluorotellurite glasses under 445 nm excitation. Emission bands located around 490, 528, 611, and 643 nm correspond to the Pr3+ transitions of (3P1,3P0)→3H4, 3P03H5, (3P1,3P0)→3H6, and 3P03F2, respectively. Inset (a) compares the peak wavelengths of Pr3+: (3P1,3P0)→3H4 emission at different Pr3+ dopant concentration (solid lines) as well as the absorption band corresponding to Pr3+: (1I6 + 3P1,3P0)←3H4 (dotted line). Inset (b) shows the normalized PL intensity from the Pr3+: (3P1,3P0)→3H6 emission (solid lines) and the absorption band from the Pr3+: 1D23H4 transition (dotted line).

Fig. 5
Fig. 5

Decay curves of Pr3+-doped glass samples monitored at (a) 1480 nm and (b) 495 nm. Insets (a) and (b) show the lifetimes of the both emissions as a function of Pr3+ dopant concentration.

Fig. 6
Fig. 6

Schematic energy-level diagram of Pr3+ in fluorotellurite glass and energy transfer processes involved. Notations (i), (ii), and (iii) stand for the cross relaxation processes [3P0, 3H4]→[1D2, (3H6,3F2)], [3P1, 3H4]→[3H6, 1D2], and [1D2, 3H4]→[1G4, 3F4,3] among Pr3+ ions, respectively.

Tables (2)

Tables Icon

Table 1 Measured and calculated oscillator strengths, and electric dipole line strengths of absorption transitions of Pr3+ in fluorotellurite glass

Tables Icon

Table 2 Spontaneous transition parameters of Pr3+: 3P1, 3P0, 1D2, and 1G4 in fluorotellurite glass

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A( aJ;bJ' )= 64 π 4 e 2 3h λ 3 ( 2J+1 ) n ( n 2 +2 ) 2 9 × S ed ( aJ;bJ' ),
σ em ( λ )= A j β ji λ ji 5 I( λ ji ) 8πc n 2 λ ji I( λ ji )dλ ,

Metrics