Abstract

A network-embedded self-tuning cavity is proved in wavelength division multiplexed passive optical network transmission over 32 channels. The external source-less topology takes advantage of a reflective element at the remote node and a reflective semiconductor optical amplifier at the optical network unit to establish a distribution-fiber based cavity. The bit error rate performance of up to 5-km cavities is presented with two optical network units simultaneously operating and with downstream signal co presence. The experimental analysis at 1.25 Gb/s provides an evaluation of polarization dependences when exploiting low polarization dependent gain reflective semiconductor optical amplifiers with 25-km and 50-km standard single mode fiber transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, S.-M. Lee, K.-M. Choi, J.-H. Moon, S.-G. Mun, K.-T. Jeong, J. H. Kim, and B. Kim, “WDM-PON experiences in Korea [Invited],” J. Opt. Netw. 6(5), 451–464 (2007).
  2. M. J. Wale, “Options and trends for PON tunable optical transceivers,” in Proceeding of European Conference on Optical Communication (2011), paper Mo.2.C.1.
  3. N. Kashima, “Dynamic properties of FP-LD transmitters using side mode injection locking for LAN’s and WDM-PONs,” J. Lightwave Technol. 24(8), 3045–3058 (2006).
    [CrossRef]
  4. S. J. Park, Y.-B. Choi, J.-M. Oh, S.-G. Koo, and D. Lee, “An evolution scenario of a broadband access network using R-SOA-based WDM-PON technologies,” J. Lightwave Technol. 25(11), 3479–3487 (2007).
    [CrossRef]
  5. H. D. Kim, S.-G. Kang, and C.-H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
    [CrossRef]
  6. E. Wong, K. Lee, and T. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
    [CrossRef]
  7. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
    [CrossRef]
  8. M. Presi and E. Ciaramella, “Stable self-seeding of R-SOAs for WDM-PONs,” in Proceeding of Optical Fiber Communication Conference (2011), paper OMP4.
  9. G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
    [CrossRef]
  10. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
    [CrossRef]
  11. A. McCoy, P. Horak, B. Thomsen, M. Ibsen, and D. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
    [CrossRef]
  12. T. Mizuochi, “Next generation FEC for optical communication,” Proceeding of OFC 2008, paper OTuE5.
  13. K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
    [CrossRef]

2010 (1)

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

2001 (2)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

2000 (1)

H. D. Kim, S.-G. Kang, and C.-H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

1998 (1)

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

Anderson, T.

Brenot, R.

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

Burrows, E. C.

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

Chanclou, P.

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

Chen, C.

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

Choi, K.-M.

Choi, Y.-B.

de Valicourt, G.

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

Dreyer, K.

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

Duan, G. H.

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Horak, P.

Ibsen, M.

Jeong, K.-T.

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Kang, S.-G.

H. D. Kim, S.-G. Kang, and C.-H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Kashima, N.

Kim, B.

Kim, H. D.

H. D. Kim, S.-G. Kang, and C.-H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Kim, J. H.

Koo, S.-G.

Koren, U.

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

Lamponi, M.

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

Landreau, J.

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

Le, C.-H.

H. D. Kim, S.-G. Kang, and C.-H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Lee, C.-H.

Lee, D.

Lee, K.

Lee, S.-M.

Liou, K.-Y.

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

Make, D.

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

McCoy, A.

Moon, J.-H.

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Mun, S.-G.

Oh, J.-M.

Park, S. J.

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Richardson, D.

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Sulhoff, J. W.

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

Thomsen, B.

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Wong, E.

Electron. Lett. (1)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 328–333 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. D. Kim, S.-G. Kang, and C.-H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

G. de Valicourt, D. Make, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High gain (30 dB) and high saturation power (11dBm) RSOA devices as colourless ONU sources in long reach hybrid WDM/TDM -PON architecture,” IEEE Photon. Technol. Lett. 22(3), 191–193 (2010).
[CrossRef]

K.-Y. Liou, U. Koren, C. Chen, E. C. Burrows, K. Dreyer, and J. W. Sulhoff, “A 24-Channel wavelength-selectable Er-Fiber ring laser with intracavity waveguide-grating-router and semiconductor Fabry–Perot filter,” IEEE Photon. Technol. Lett. 10(12), 1787–1789 (1998).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Netw. (1)

Other (3)

M. J. Wale, “Options and trends for PON tunable optical transceivers,” in Proceeding of European Conference on Optical Communication (2011), paper Mo.2.C.1.

M. Presi and E. Ciaramella, “Stable self-seeding of R-SOAs for WDM-PONs,” in Proceeding of Optical Fiber Communication Conference (2011), paper OMP4.

T. Mizuochi, “Next generation FEC for optical communication,” Proceeding of OFC 2008, paper OTuE5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimented WDM PON topology (b) III-V Lab RSOA1 output gain spectrum (c) III-V Lab RSOA2 output gain spectrum (0.5 nm resolution).

Fig. 2
Fig. 2

(a) Optical output power vs RSOA1 bias current, for US channels 1, 16 and 32. Back to back 1.25-Gb/s eye diagrams with linear PD for (b) channel 1, (c) channel 16, (d) channel 32.

Fig. 3
Fig. 3

BER versus received power for channel 1 at ONU1: a) US and DS evaluation with simultaneous operation of ONU2 over 24 and 50 km b) analysis of channel 1 in different measurement point of the setup for 25 and 50 km with reference to Fig. 1.

Fig. 4
Fig. 4

Power budget at 10−4 BER for different channels of ONU1 (a) and ONU2 (b). The red and blue areas represent the spread in presence of the second ONU and the DS transmission respectively in best and worst SOP conditions. The green area expresses the performance differences associated to polarization variations.

Fig. 5
Fig. 5

BER versus received power for channel 1 ONU1 with 5-km distribution fiber length for US in: back to back (green circles) and in point C (Fig. 1) after 50-km transmission (red circles), in point C after 50-km in presence of the second operating ONU (red triangles) and in presence of the DS (red diamonds). DS performance in back to back (black open squares) and after 50-km transmission (black full diamonds) is also displayed.

Metrics