Abstract

We have developed a wavelength-scale embedded active-region photonic-crystal laser using lateral p-i-n structure. Zn diffusion and Si ion implantation are used for p- and n-type doping. Room-temperature continuous-wave lasing behavior is clearly observed from the injection current dependence of the output power, 3dB-bandwidth of the peak, and lasing wavelength. The threshold current is 390 μA and the estimated effective threshold current is 9.4 μA. The output power in output waveguide is 1.82 μW for a 2.0-mA current injection. These results indicate that the embedded active-region structure effectively reduce the thermal resistance. Ultrasmall electrically driven lasers are an important step towards on-chip photonic network applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970).
    [CrossRef]
  2. Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).
  3. F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55(3), 221–222 (1989).
    [CrossRef]
  4. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  5. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [CrossRef]
  6. D. A. B. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  7. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
    [CrossRef] [PubMed]
  8. http://www.itrs.net/Links/2007ITRS/Home2007.htm .
  9. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [CrossRef]
  10. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
    [CrossRef]
  11. M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99, 1768–1779 (2011).
  12. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
    [CrossRef]
  13. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
    [CrossRef] [PubMed]
  14. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [CrossRef] [PubMed]
  15. M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
    [CrossRef]
  16. C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45(4), 227–228 (2009).
    [CrossRef]
  17. B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
    [CrossRef]
  18. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [CrossRef]
  19. K. Takeda, T. Sato, A. Shinya, K. Nozaki, C.-H. Chen, Y. Kawaguchi, H. Taniyama, M. Notomi, and S. Matsuo, “80°C continuous wave operation of photonic-crystal nanocavity lasers,” 23rd International Conference on Indium Phosphide and Related Materials, Berlin, May 2011.
  20. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
    [CrossRef] [PubMed]
  21. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
    [CrossRef] [PubMed]
  22. G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity laser,” Appl. Phys. Lett. 60(3), 304–306 (1992).
    [CrossRef]
  23. S. L. Chuang, Physics of Optoelectronic Devices (John Willey & Sons, 1995).

2011

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99, 1768–1779 (2011).

2010

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

2009

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

D. A. B. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45(4), 227–228 (2009).
[CrossRef]

2008

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
[CrossRef] [PubMed]

2007

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

2006

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

2004

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

1992

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity laser,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

1989

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55(3), 221–222 (1989).
[CrossRef]

1970

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970).
[CrossRef]

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Alferov, Zh. I.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Andreev, V. M.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Asano, T.

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity laser,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Chen, C.-H.

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Choquette, K. D.

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45(4), 227–228 (2009).
[CrossRef]

Ellis, B.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Foy, P. W.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970).
[CrossRef]

Friedman, E. G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Garbuzov, D. Z.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Giannopoulos, A. V.

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45(4), 227–228 (2009).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Hagino, H.

Haller, E. E.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Harris, J.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Hayashi, I.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970).
[CrossRef]

Iga, K.

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55(3), 221–222 (1989).
[CrossRef]

Jeong, K.-Y.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity laser,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

Kawaguchi, Y.

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S.-B.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

Kinoshita, S.

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55(3), 221–222 (1989).
[CrossRef]

Koyama, F.

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55(3), 221–222 (1989).
[CrossRef]

Kuramochi, E.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Lee, Y.-H.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

Long, C. M.

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45(4), 227–228 (2009).
[CrossRef]

Matsuo, S.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Mayer, M.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Morozov, E. P.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Nishiguchi, K.

Noda, S.

Notomi, M.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99, 1768–1779 (2011).

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Nozaki, K.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Panish, M. B.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970).
[CrossRef]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Park, H.-G.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

Portnoi, E. L.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Sarmiento, T.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Sato, T.

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Seo, M.-K.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Shinya, A.

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Song, B.-S.

Sumikura, H.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

Sumski, S.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970).
[CrossRef]

Takahashi, Y.

Tanabe, T.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Tanaka, Y.

Taniyama, H.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[CrossRef] [PubMed]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Trofim, V. G.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Vuckovic, J.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Yamamoto, Y.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity laser,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Yang, J.-K.

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

Zhang, B.

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Zhilyaev, Yu. V.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

Appl. Phys. Lett.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17(3), 109–111 (1970).
[CrossRef]

F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett. 55(3), 221–222 (1989).
[CrossRef]

M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90(17), 171122 (2007).
[CrossRef]

B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett. 96(18), 181103 (2010).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity laser,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

Electron. Lett.

C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett. 45(4), 227–228 (2009).
[CrossRef]

Fiz. Tekh. Poluprovodn.

Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn. 4, 1826 (1970).

IEEE J. Sel. Top. Quantum Electron.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

IEEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

IET Circuits, Devices Syst.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst. 5(2), 84–93 (2011).
[CrossRef]

Nat. Photonics

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Opt. Express

Proc. IEEE

M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99, 1768–1779 (2011).

D. A. B. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Science

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Other

K. Takeda, T. Sato, A. Shinya, K. Nozaki, C.-H. Chen, Y. Kawaguchi, H. Taniyama, M. Notomi, and S. Matsuo, “80°C continuous wave operation of photonic-crystal nanocavity lasers,” 23rd International Conference on Indium Phosphide and Related Materials, Berlin, May 2011.

http://www.itrs.net/Links/2007ITRS/Home2007.htm .

S. L. Chuang, Physics of Optoelectronic Devices (John Willey & Sons, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of LEAP laser with lateral current injection structure: (a) top view, (b) cross-sectional view. Wavelength-scale InGaAsP-based active region is embedded with an InP based line-defect PhC waveguide

Fig. 2
Fig. 2

(a) Cross-sectional SEM image of fabricated device. The active region was 2.6 x 0.3 x 0.15 μm3 and the air hole was 220 nm in diameter. Zn diffusion and Si ion implantation were used for p- and n-type doping into an i-InP layer. (b) Field profile of the cavity mode obtained by using finite-difference time-domain (FDTD) calculation. The Q-factor was ~4200 and Veff was ~0.15 μm3.

Fig. 3
Fig. 3

(a) Light and voltage versus current characteristic of LEAP laser for RT CW operation. The device exhibits a clear kink at a threshold of 390 μA. The output power coupled to output line-defect waveguide was increased to 1.82 μW. (b, c) Images captured using IR camera for injection currents of 0.4 and 2.0 mA. The output lights are observed from the cavity to surface normal direction and the facet of the output waveguide.

Fig. 4
Fig. 4

(a) Injection current dependence of the 3-dB bandwidth of the peak, and the lasing wavelength. In the threshold region around 0.4 mA, the linewidth broadened with increasing output power. The 3-dB bandwidth at the threshold was 0.035 nm, corresponding to a Q-factor of 44,600. (b) Light output change near the threshold region for electrical and optical pumping experiment. The output light was detected from the output waveguide for both measurements. The absorbed optical power (upper X-axis) is shifted to agree with the output power dependence of the injection current.

Fig. 5
Fig. 5

(a) Lasing spectra for pulse widths of 20 ns and 180 μs with 200-μs repetition. (b) Lasing spectra for various injection currents ranging from 0.5 to 2.0 mA. (c) Active region temperature for various injection currents.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P eff =P 0 (1-exp(-Γαh))=0.0314 P 0

Metrics