Abstract

Overall performance of a thin film solar cell is determined by the efficiency of converting photons to electrons through light absorption, carrier generation, and carrier collection. Recently, photon management has emerged as a powerful tool to further boost this conversion efficiency. Here we propose a novel nanograting solar cell design that achieves enhanced broadband light absorption and carrier generation in conjunction with the reduced use of active and non-earth-abundant materials. A test using this design for the short circuit current density in CuInxGa(1-x)Se2 (CIGS) thin film solar cells shows up to 250% enhancement when compared to the bare thin film cells. In addition, placing metal strips on top of the nanograting to act as the top electrode reduces the use of non-earth-abundant materials that is normally used as the transparent conducting materials. This novel solar cell design has the potential to become a new solar cell platform technology for various thin film solar cell systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  2. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  3. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
    [CrossRef]
  4. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
    [CrossRef] [PubMed]
  5. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
    [CrossRef]
  6. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  8. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
    [CrossRef]
  9. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
    [CrossRef] [PubMed]
  10. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  11. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  12. W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [CrossRef] [PubMed]
  13. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun. 2, 517 (2011).
    [CrossRef] [PubMed]
  14. L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
    [CrossRef] [PubMed]
  15. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  16. E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  17. L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  18. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [CrossRef] [PubMed]
  19. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
    [CrossRef]
  20. K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480–481, 499–502 (2005).
    [CrossRef]
  21. R. D. Wieting, “CIS product introduction: progress and challenges,” in Ncpv Photovoltaics Program Review - Proceedings of the 15th Conference, M. AlJassim and J. P. Thornton, eds. (1999) pp. 3–8.
  22. A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
    [CrossRef]
  23. J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
    [CrossRef]
  24. N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
    [CrossRef] [PubMed]
  25. Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
    [CrossRef]
  26. S. Nanomanufacturing, Chen, ed., Nanotechnology Book Series (American Scientific Publishers, Stevenson Ranch, 2009), vol. 284.
  27. COMSOL 3.3 Reference Manual, version 3.3 ed (2005).
  28. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12(2), 234–248 (2004).
    [CrossRef] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  30. M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).
  31. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  32. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  33. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
    [CrossRef] [PubMed]
  34. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  35. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st. ed. (Springer, 2007).
  36. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]

2011 (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun. 2, 517 (2011).
[CrossRef] [PubMed]

2010 (4)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

2009 (4)

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
[CrossRef]

2008 (5)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

2007 (4)

N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
[CrossRef] [PubMed]

N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

2005 (4)

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480–481, 499–502 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

2004 (4)

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12(2), 234–248 (2004).
[CrossRef] [PubMed]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).

2001 (1)

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Ahn, J. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Alonso, M. I.

M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun. 2, 517 (2011).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Borel, P. I.

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun. 2, 517 (2011).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Brongersma, M. L.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
[CrossRef]

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Cai, W. S.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Calwer, H.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Cao, L. Y.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Chen, S. C.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Chong, H. M. H.

Chueh, Y. L.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Clemens, B. M.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

DeHart, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Fan, P. Y.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S. H.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, Z. Y.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Fang, Y.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun. 2, 517 (2011).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Ford, A. C.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Frandsen, L. H.

Garnett, E.

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Garriga, M.

M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Hanna, G.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Harpøth, A.

Hernandez, E.

M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).

Hernandez, O.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Ho, J. C.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Huang, J. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Jasenek, A.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Javey, A.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Karg, F. H.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Keane, J. C.

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480–481, 499–502 (2005).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Kempa, T. J.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Kötschau, I. M.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Kristensen, M.

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Lavrinenko, A.

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Leon, M.

M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lieber, C. M.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
[CrossRef]

Lu, Y. L.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Meier, J.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Niemi, T.

Niesen, T.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480–481, 499–502 (2005).
[CrossRef]

Osgood, R. M.

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
[CrossRef]

Palm, J.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Panoiu, N. C.

Park, J. S.

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Plessen, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Polman, A.

Powalla, M.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Probst, V.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Ramanathan, K.

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480–481, 499–502 (2005).
[CrossRef]

Rau, U.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Reinhardt, K.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Repins, I.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Rincon, C. A. D.

M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).

Rockstuhl, C.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Schock, H. W.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Schuller, J. A.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Stetter, W.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Takahashi, T.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Takei, K.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Teeter, G.

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480–481, 499–502 (2005).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Thorhauge, M.

Tian, B. Z.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Toelle, R.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vasudev, A. P.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Visbeck, S.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Vogt, H.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Voorwinden, G.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Wang, W.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Weinert, K.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

Wendl, M.

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

Werner, J. H.

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
[CrossRef]

White, J. S.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, S. M.

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Yang, P. D.

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yerushalmi, R.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Yu, G. H.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N. F.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, Z. F.

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

Zheng, X. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A. C. Ford, Y. L. Chueh, and A. Javey, “Toward the development of printable nanowire electronics and sensors,” Adv. Mater. (Deerfield Beach Fla.) 21(37), 3730–3743 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3510 (2009).
[CrossRef]

Appl. Phys. A (1)

M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys. A 74, 659–664 (2002).

Appl. Phys. Lett. (2)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

J. Appl. Phys. (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Nano Lett. (4)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Nat Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun. 2, 517 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Nature (3)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[CrossRef] [PubMed]

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Prog. Photovolt. Res. Appl. (2)

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. Res. Appl. 16(3), 235–239 (2008).
[CrossRef]

Science (1)

N. S. Lewis, “Toward cost-effective solar energy use,” Science 315(5813), 798–801 (2007).
[CrossRef] [PubMed]

Thin Solid Films (3)

A. Jasenek, U. Rau, K. Weinert, I. M. Kötschau, G. Hanna, G. Voorwinden, M. Powalla, H. W. Schock, and J. H. Werner, “Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation,” Thin Solid Films 387(1-2), 228–230 (2001).
[CrossRef]

J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl, and F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films 451–452, 544–551 (2004).
[CrossRef]

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480–481, 499–502 (2005).
[CrossRef]

Other (5)

R. D. Wieting, “CIS product introduction: progress and challenges,” in Ncpv Photovoltaics Program Review - Proceedings of the 15th Conference, M. AlJassim and J. P. Thornton, eds. (1999) pp. 3–8.

S. Nanomanufacturing, Chen, ed., Nanotechnology Book Series (American Scientific Publishers, Stevenson Ranch, 2009), vol. 284.

COMSOL 3.3 Reference Manual, version 3.3 ed (2005).

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st. ed. (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The proposed solar cell structure. (a) A 3D conceptual schematic diagram. (b) A cross-sectional view outlining the device’s structure to be used in the simulation. The top electrode thickness is T1, the nanograting width is W, the period is P, and the active layer thickness is T2.

Fig. 2
Fig. 2

Mapping the absorption enhancement with varying geometric parameters and illumination conditions. Both TE and TM polarizations were considered in order to account for the randomly polarized nature of sunlight. (a, c, e) show the case under TE illumination while (b, d, f) show TM cases. (a) and (b) show the absorption enhancement versus both wavelength and the CIGS layer thickness. The array period and wire width are 200 nm and 100 nm, respectively. (c) and (d) show the enhancement versus both wavelength and the nanowire array’s period. In these cases, the CIGS nanowire layer thickness and width (W) were both fixed at 100 nm. (e) and (f) show maps of the absorption enhancement versus both wavelength and nanowire width (W). The array period and wire thickness are fixed at 200 nm and 100 nm, respectively.

Fig. 3
Fig. 3

Normalized and time-averaged electric field plots across the cell structure under TE illumination. In all cases, the incidence is at normal and the CIGS layer thickness is fixed at 125nm. (a) A bare CIGS layer was illuminated at wavelength of 620 nm. (b) and (c) The nanograting CIGS cells were illuminated at wavelengths of 940nm and 490nm, respectively. The period and width of the nanogratings in the latter two cases are 200nm and 100nm, respectively.

Fig. 4
Fig. 4

Normalized and time-averaged field plots across the nanograting CIGS cells under TM illumination. In all cases, the incidence is normal and the CIGS layer thickness, period, and wire widths are 100nm 200nm, and 100nm. The wavelengths of the incoming light are 800nm, 540nm and 380nm, respectively.

Fig. 5
Fig. 5

Short-circuit photocurrent density enhancement over the full solar spectrum. (a-c) shows the dependency of the current density enhancement on the active layer thickness, array period, and nanograting width, respectively. (a) Current density enhancement compared with a conventional cell as a function of the active layer thickness with the array period at 200 nm, wire width at 85 nm (solid lines) and 100 nm (dashed lines), respectively. (b) Current density enhancement compared with a conventional cell as a function of array period with the wire thickness at 200 nm, wire width at 100 nm (solid lines) and 150 nm (dashed lines), respectively. (c) Current density enhancement compared with conventional cell as a function of wire width with the array period at 200 nm, wire thickness at 100 nm (solid lines) and 150 nm (dashed lines), respectively. In (a-c), red, blue and black curves show the enhancement under TE, TM and unpolarized illumination, respectively.

Fig. 6
Fig. 6

Short-circuit photocurrent density enhancement over the full solar spectrum. (a-c) shows the current density enhancement dependency on active layer thickness, array period, and nanograting width, respectively. (a) Current density enhancement compared with conventional cell as a function of active layer thickness with array period at 200 nm, wire width at 85 nm (solid lines) and 100 nm (dashed lines), respectively. (b) Current density enhancement compared with conventional cell as a function of array period with wire thickness at 200 nm, wire width at 100 nm (solid lines) and 150 nm (dashed lines), respectively. (c) Current density enhancement compared with conventional cell as a function of wire width with array period at 200 nm, wire thickness at 100 nm (solid lines) and 150 nm (dashed lines), respectively. In (a-c), red, blue and black curves show the enhancement under TE, TM and unpolarized illumination, respectively. (d-f) Current density enhancement compared with conventional cell as a function of active layer thickness, period, and nanograting width. In (d), array period is 200 nm, wire width is 100 nm. In (e), active layer thickness is 100 nm, wire width is 100 nm. In (f) active layer thickness is 100 nm, array period is 200 nm. Red, blue and black curves in these figures show the enhancement using different materials (a-Si, CdTe, and GaAs, respectively).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(λ)= s S ( r ,ω,λ) d a
J SC =q F s (λ)η(λ,G) Q E int (λ)dλ
j SC = J SC V = 1 V q F s (λ)η(λ,G) Q E int (λ)dλ
K= j SC NW j SC Con = V Con q F s (λ) η NW (λ, T 2 ,P,W) Q E int (λ)dλ V NW q F s (λ) η Con (λ, T 2 ) Q E int (λ)dλ = V Con V NW f( T 2 ) 1 2 F s (λ) η Con (λ, T 2 ) [ Λ TM (λ, T 2 ,P,W)+ Λ TE (λ, T 2 ,P,W)]Q E int (λ)dλ

Metrics