Abstract

In this paper a study of waveguide photodetectors based on InAs/InP(100) quantum dot (QD) active material are presented for the first time. These detectors are fabricated using the layer stack of semiconductor optical amplifiers (SOAs) and are compatible with the active-passive integration technology. We investigated dark current, responsivity as well as spectral response and bandwidth of the detectors. It is demonstrated that the devices meet the requirements for swept-source optical coherent tomography (SS-OCT) around 1.7 μm. A rate equation model for QD-SOAs was modified and applied to the results to understand the dynamics of the devices. The model showed a good match to the measurements in the 1.6 to 1.8 μm wavelength range by fitting only one of the carrier escape rates. An equivalent circuit model was used to determine the capacitances which dominated the electrical bandwidth.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  4. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  5. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
    [CrossRef] [PubMed]
  6. D.-J. Faber, Department of Biomedical Engineering and Physics, Academic Medical Center (AMC), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (personal communication, 2007).
  7. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1(1), 176–185 (2010).
    [CrossRef] [PubMed]
  8. B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).
  9. D. J. Faber and T. G. v. Leeuwen, “Optical coherence tomography,” in Optical-thermal response of laser-irradiated tissue, 2nd ed., A. J. Welch and M. J. C. v. Gemert, eds. (Springer, 2011).
  10. Thorlabs PDB120 series, http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2151 .
  11. I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
    [CrossRef]
  12. H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
    [CrossRef]
  13. Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
    [CrossRef]
  14. J. Oh, S. Csutak, and C. Campbell, “High-speed interdigitated Ge PIN photodetectors,” IEEE Photon. Technol. Lett. 14(3), 369–371 (2002).
    [CrossRef]
  15. A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28(6), 630–636 (1999).
    [CrossRef]
  16. Thorlabs SIR5 series, http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=1297 .
  17. Hamamatsu G8423 series, http://sales.hamamatsu.com/index.php?id=13157898 .
  18. Thorlabs FDG series, http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=2822 .
  19. Hamamatsu P series, http://jp.hamamatsu.com/products/sensor-ssd/pd128/pd134/index_en.html .
  20. C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
    [CrossRef]
  21. S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
    [CrossRef]
  22. S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2430 (2001).
    [CrossRef]
  23. B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
    [CrossRef]
  24. S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
    [CrossRef]
  25. R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
    [CrossRef]
  26. H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
    [CrossRef]
  27. Ultrafast Sensors, http://www.ultrafastsensors.com/Amplifier.htm .
  28. Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
    [CrossRef]
  29. L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, “Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide,” Appl. Opt. 48(4), 672–678 (2009).
    [CrossRef] [PubMed]
  30. A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
    [CrossRef]
  31. L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
    [CrossRef]
  32. K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
    [CrossRef]
  33. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
    [CrossRef]
  34. M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
    [CrossRef]
  35. H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortions in photodiode,” IEEE Photon. Technol. Lett. 10(11), 1608–1610 (1998).
    [CrossRef]
  36. J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
    [CrossRef]
  37. E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
    [CrossRef]
  38. M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
    [CrossRef]

2010 (1)

2009 (3)

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

L. Yang, D. Dai, B. Yang, Z. Sheng, and S. He, “Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide,” Appl. Opt. 48(4), 672–678 (2009).
[CrossRef] [PubMed]

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

2008 (3)

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[CrossRef]

2006 (5)

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[CrossRef]

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

2005 (1)

E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
[CrossRef]

2004 (1)

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

2003 (1)

2002 (3)

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

J. Oh, S. Csutak, and C. Campbell, “High-speed interdigitated Ge PIN photodetectors,” IEEE Photon. Technol. Lett. 14(3), 369–371 (2002).
[CrossRef]

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

2001 (1)

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2430 (2001).
[CrossRef]

2000 (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

1999 (1)

A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28(6), 630–636 (1999).
[CrossRef]

1998 (2)

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortions in photodiode,” IEEE Photon. Technol. Lett. 10(11), 1608–1610 (1998).
[CrossRef]

1997 (1)

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

1992 (1)

K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Alloing, B.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Ambrosius, H. P. M. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Anantathanasarn, S.

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Aytur, O.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

Bach, H. G.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Barbarin, Y.

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Beling, A.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Bente, E. A. J.

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

Bente, E. A. J. M.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Biyikli, N.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

Bogaart, E. W.

E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
[CrossRef]

Boppart, S. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

Butun, B.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

Cable, A.

Campbell, C.

J. Oh, S. Csutak, and C. Campbell, “High-speed interdigitated Ge PIN photodetectors,” IEEE Photon. Technol. Lett. 14(3), 369–371 (2002).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Chinn, S. R.

Choma, M.

Ciupa, R.

A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28(6), 630–636 (1999).
[CrossRef]

Csutak, S.

J. Oh, S. Csutak, and C. Campbell, “High-speed interdigitated Ge PIN photodetectors,” IEEE Photon. Technol. Lett. 14(3), 369–371 (2002).
[CrossRef]

Dai, D.

de Vries, T.

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Ebert, W.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Eijkemans, T. J.

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Eliseev, P. G.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

Erdtmann, M.

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

Faber, D. J.

Fiore, A.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Geluk, E. J.

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Geluk, E.-J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Gerardino, A.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Gioannini, M.

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[CrossRef]

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[CrossRef]

Gol'tsman, G. N.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Gong, Q.

E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
[CrossRef]

Gorczynska, I.

Gray, A. L.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, Y.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Hao, G.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Hata, S.

K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[CrossRef]

Haverkort, J. E. M.

E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
[CrossRef]

He, S.

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ishikawa, H.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Izatt, J.

Jelen, C.

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

Jiang, H.

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortions in photodiode,” IEEE Photon. Technol. Lett. 10(11), 1608–1610 (1998).
[CrossRef]

Jiang, J.

Jiao, Y.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Kalkman, J.

Kato, K.

K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[CrossRef]

Kawano, K.

K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[CrossRef]

Kim, S.

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

Kimukin, I.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

Kodach, V. M.

Kotani, J.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Kozen, A.

K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[CrossRef]

Kunkel, R.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Lee, S.-C.

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2430 (2001).
[CrossRef]

Leijtens, X.

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

Leijtens, X. J. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Lester, L. F.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

Li, A.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Li, L. H.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Li, Y.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, S.-Y.

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2430 (2001).
[CrossRef]

Liu, T.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Lunghi, L.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Luong, S.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Malloy, K. J.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

Marsili, F.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Martinez, A.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Mekonnen, G. G.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Michel, E.

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

Mohseni, H.

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

Montrosset, I.

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[CrossRef]

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Nakata, Y.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Nikoufard, M.

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

Notzel, R.

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Nötzel, R.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
[CrossRef]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Oei, Y.

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

Oei, Y. S.

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Oei, Y.-S.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Oh, J.

J. Oh, S. Csutak, and C. Campbell, “High-speed interdigitated Ge PIN photodetectors,” IEEE Photon. Technol. Lett. 14(3), 369–371 (2002).
[CrossRef]

Ozbay, E.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Razeghi, M.

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

Rogalski, A.

A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28(6), 630–636 (1999).
[CrossRef]

Rotter, T. J.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

Sakamoto, A.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Sarunic, M.

Satpati, B.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Schlaak, W.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Schmidt, D.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seeger, A.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Servanton, G.

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Sevega, A.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[CrossRef]

Sheng, Z.

Smalbrugge, B.

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Smalbrugge, E.

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Smirnov, K. V.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Smit, M. K.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stintz, A.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

Stollberg, M.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

Su, H.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Sugawara, M.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Sun, K.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tahvili, M. S.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

Tang, S.-F.

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2430 (2001).
[CrossRef]

Tearney, G. J.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

Thijs, P. J.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Tilma, B. W.

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

Trampert, A.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Ukhanov, A. A.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

Unlu, S. M.

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

Vakhtomin, Y. B.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

van Leeuwen, T. G.

van Otten, F. W. M.

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

van Veldhoven, P. J.

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

van Veldhoven, R. P. J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Varangis, P. M.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Wang, H.

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

Wang, R. H.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

Wolter, J. H.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
[CrossRef]

Xin, Y. C.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Xu, L.

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

Yang, B.

Yang, C.

Yang, L.

Yoshida, J.

K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[CrossRef]

Yu, P. K. L.

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortions in photodiode,” IEEE Photon. Technol. Lett. 10(11), 1608–1610 (1998).
[CrossRef]

Yuan, J.

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

Zhang, L.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Zhu, C.

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

Zilko, J.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Zinoni, C.

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

Zou, Z.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81(6), 981–983 (2002).
[CrossRef]

C. Zinoni, B. Alloing, L. H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y. B. Vakhtomin, K. V. Smirnov, and G. N. Gol'tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors,” Appl. Phys. Lett. 91(3), 031106 (2007).
[CrossRef]

S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, “Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector,” Appl. Phys. Lett. 73(7), 963–965 (1998).
[CrossRef]

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2430 (2001).
[CrossRef]

S. Anantathanasarn, R. Notzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

E. W. Bogaart, R. Nötzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, “Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region,” Appl. Phys. Lett. 86(17), 173109 (2005).
[CrossRef]

Biomed. Opt. Express (1)

Electron. Lett. (2)

H. Wang, J. Yuan, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. J. Geluk, E. A. J. Bente, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Notzel, “Butt joint integrated extended cavity InAs/ InP (100) quantum dot laser emitting around 1.55 μm,” Electron. Lett. 44(8), 522–523 (2008).
[CrossRef]

J. Kotani, P. J. van Veldhoven, T. de Vries, B. Smalbrugge, E. A. J. M. Bente, M. K. Smit, and R. Notzel, “First demonstration of single-layer InAs/InP (100) quantum-dot laser: continuous wave, room temperature, ground state,” Electron. Lett. 45(25), 1317–1318 (2009).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, “A high-efficiency 50 GHz InGaAs multimode waveguide photodetector,” IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[CrossRef]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Nötzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7µm wavelength region,” IEEE J. Quantum Electron. (to be published).

IEEE J. Sel. Top. Quantum Electron. (1)

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Oh, S. Csutak, and C. Campbell, “High-speed interdigitated Ge PIN photodetectors,” IEEE Photon. Technol. Lett. 14(3), 369–371 (2002).
[CrossRef]

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortions in photodiode,” IEEE Photon. Technol. Lett. 10(11), 1608–1610 (1998).
[CrossRef]

I. Kimukin, N. Biyikli, B. Butun, O. Aytur, S. M. Unlu, and E. Ozbay, “InGaAs-based high-performance p-i-n photodiodes,” IEEE Photon. Technol. Lett. 14(3), 366–368 (2002).
[CrossRef]

L. Xu, M. Nikoufard, X. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. Oei, and M. K. Smit, “High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate,” IEEE Photon. Technol. Lett. 20(23), 1941–1943 (2008).
[CrossRef]

Infrared Phys. Technol. (1)

Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol. 47(3), 257–262 (2006).
[CrossRef]

J. Electron. Mater. (1)

A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28(6), 630–636 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 μm wavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45(8B), 6544–6549 (2006).
[CrossRef]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (2)

B. W. Tilma, M. S. Tahvili, J. Kotani, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Measurement and analysis of optical gain spectra in 1.6 to 1.8 μm InAs/InP (100) quantum-dot amplifiers,” Opt. Quantum Electron. 41(10), 735–749 (2009).
[CrossRef]

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[CrossRef]

Phys. Rev. B (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (8)

D. J. Faber and T. G. v. Leeuwen, “Optical coherence tomography,” in Optical-thermal response of laser-irradiated tissue, 2nd ed., A. J. Welch and M. J. C. v. Gemert, eds. (Springer, 2011).

Thorlabs PDB120 series, http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2151 .

D.-J. Faber, Department of Biomedical Engineering and Physics, Academic Medical Center (AMC), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (personal communication, 2007).

Thorlabs SIR5 series, http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=1297 .

Hamamatsu G8423 series, http://sales.hamamatsu.com/index.php?id=13157898 .

Thorlabs FDG series, http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=2822 .

Hamamatsu P series, http://jp.hamamatsu.com/products/sensor-ssd/pd128/pd134/index_en.html .

Ultrafast Sensors, http://www.ultrafastsensors.com/Amplifier.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) The cross-section structure of the QD-SOA section and isolation section. (b) The layout of a chip of QD waveguide photodetectors.

Fig. 2
Fig. 2

The schematic diagram of the static and dynamic measurement methods.

Fig. 3
Fig. 3

The dark currents under various reverse-bias voltages for different device lengths.

Fig. 4
Fig. 4

(a) The responsivities of 32 devices with different lengths at a wavelength of 1640 nm. The measurements were done under four different reverse-bias voltages and for both polarizations. The simulated results (which will be discussed in Section 4) are also shown in the figure. (b) The absorption length (for both polarizations) under different reverse-bias voltages.

Fig. 5
Fig. 5

(a) The ASE spectrum collected from the output facet of the long SOA section and the residual power collected from the output facet of the short section. (b) The absorption spectra for different reverse-bias voltages.

Fig. 6
Fig. 6

(a) The coupling losses between the lensed fiber and waveguide facet for both polarizations. (b) The spectral responses of a 960 μm-long device under different reverse-bias voltages. The spectrums for both TE and TM polarizations are shown.

Fig. 7
Fig. 7

The frequency response of the 280 μm-long photodetector for different reverse-bias voltages when the modulation ranges from 10 to 100 MHz. The data are normalized at 10 MHz.

Fig. 8
Fig. 8

The frequency response of the photodetector for different device lengths when the modulation ranges from 10 to 100 MHz at a reverse bias voltage of 2 V. The data are normalized at 10 MHz.

Fig. 9
Fig. 9

The schematic of the energy band diagram of the QD active region. The carrier capture and escape rates from the states are indicated.

Fig. 10
Fig. 10

(a) The wavelength dependency of the optical confinement factors (for both TE and TM polarizations) and the internal modal loss. (b) The values of τqe at different reverse-bias voltages.

Fig. 11
Fig. 11

(a) The spectral simulations of a 960 μm-long device for TE polarization. The measured spectra are also shown for comparison. (b) The total photon absorption of the QDs calculated by the rate equation model (also for TE polarization).

Fig. 12
Fig. 12

The equivalent circuit model of the QD waveguide photodetector.

Fig. 13
Fig. 13

(a) The frequency responses of the amplifier module, the equivalent circuit and the overall model of a 280 μm-long device under 2 V reverse bias. (b) The determined values of Cpd and Cp under different reverse-bias voltages.

Fig. 14
Fig. 14

The measured and simulated 3 dB bandwidth vs. the device length.

Tables (1)

Tables Icon

Table 1 Parameters used in the rate equation model

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P 0 (λ)=η P ASE (λ),
P r (λ)=[ P ASE (λ)+ P ASE (λ) e G L SOA R f ] e α L PD η,
P r (λ)= e α L PD ( e G L SOA R f +1) P 0 (λ).
d N s dt = N q τ qe N s τ s N s τ sr N s τ esc ,
d N q dt = N s τ s + n N ESn τ eESn N q τ qr N q τ qe N q τ c0 n (1 P ESn ) G n ,
d N ESn dt = N q G n (1 P ESn ) τ c0 + N GSn (1 P ESn ) τ eGSn N ESn τ r N ESn τ eESn N ESn (1 P GSn ) τ d0 + cΓ n r α ESn S,n=0,1,...,N1,
d N GSn dt = N ESn (1 P GSn ) τ d0 N GSn τ r N GSn (1 P ESn ) τ eGSn + cΓ n r α GSn S,n=0,1,...,N1,
dS dt =β N spon τ r cΓ n r n ( α ESn + α GSn )S S τ p .
τ eESn = τ c0 μ ES N D V A ρ WLeff V WL e E WL E ESn κ B T ,n=0,1,...,N1,
τ eGSn = τ d0 μ GS μ ES e E ESn E GSn κ B T ,n=0,1,...,N1.
I p =e N s τ esc .
α ESn = μ ES C g N w N D H act | P ES σ | 2 E ES (2 P ESn 1) G n B cv ( E photon E ESn ),
α GSn = μ GS C g N w N D H act | P GS σ | 2 E GS (2 P GSn 1) G n B cv ( E photon E GSn ).
α=Γ n ( α ESn + α GSn )
H 1 (ω)= 1 1+jω[ C pd ( R s + R L )+ R L ( C i + C p )] ω 2 R s R L C pd ( C i + C p ) .

Metrics