Abstract

We study the case of two simultaneous three-wave-mixing processes, where one frequency is converted to another through an intermediate frequency. The common assumption is that these processes can occur only when the material is transparent at all participating frequencies. Here we show experimentally that, under appropriate conditions, the intermediate frequency remains dark throughout the interaction. This means that even if the material is opaque at the intermediate frequency, the conversion will remain efficient. New possibilities of frequency conversion are therefore available, e.g. through absorptive bands in the ultraviolet or mid-infrared. Moreover, though it was hitherto assumed that the phase mismatch value is governed only by dispersion, we show here that phase matching also depends on light intensity. These findings promise novel all optical switching techniques.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
    [CrossRef]
  2. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
    [CrossRef]
  3. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
    [CrossRef] [PubMed]
  4. R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic Press, 2008).
  5. D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, 2007).
  6. D. Grischkowsky, M. M. T. Loy, and P. F. Liao, “Adiabatic following model for two-photon transitions: nonlinear mixing and pulse propagation,” Phys. Rev. A 12, 2514–2533 (1975).
    [CrossRef]
  7. J. C. Delagnes and L. Canioni, “Third harmonic generation in periodically poled crystals,” Proc. SPIE 7917, 79171C (2011).
    [CrossRef]
  8. C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75, 063401 (2007).
    [CrossRef]
  9. F. T. Hioe, “Dynamic symmetries in quantum electronics,” Phys. Rev. A 28, 879–886 (1983).
    [CrossRef]
  10. H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
    [CrossRef]
  11. F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
    [CrossRef]
  12. R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).
    [CrossRef]
  13. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
    [CrossRef]
  14. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
    [CrossRef] [PubMed]
  15. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [CrossRef]
  16. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  17. N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 15–29 (1998).
    [CrossRef]
  18. J. Keeler, Understanding NMR Spectroscopy (John Wiley & Sons, 2005).

2011

J. C. Delagnes and L. Canioni, “Third harmonic generation in periodically poled crystals,” Proc. SPIE 7917, 79171C (2011).
[CrossRef]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

2009

2008

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

2007

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75, 063401 (2007).
[CrossRef]

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
[CrossRef]

2005

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

2003

1999

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

1998

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 15–29 (1998).
[CrossRef]

1997

1983

F. T. Hioe, “Dynamic symmetries in quantum electronics,” Phys. Rev. A 28, 879–886 (1983).
[CrossRef]

1975

D. Grischkowsky, M. M. T. Loy, and P. F. Liao, “Adiabatic following model for two-photon transitions: nonlinear mixing and pulse propagation,” Phys. Rev. A 12, 2514–2533 (1975).
[CrossRef]

1957

R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).
[CrossRef]

1946

F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
[CrossRef]

Arie, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[CrossRef] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003).
[CrossRef] [PubMed]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Bergmann, K.

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 15–29 (1998).
[CrossRef]

Bloch, F.

F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic Press, 2008).

Bruner, B. D.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Canioni, L.

J. C. Delagnes and L. Canioni, “Third harmonic generation in periodically poled crystals,” Proc. SPIE 7917, 79171C (2011).
[CrossRef]

Delagnes, J. C.

J. C. Delagnes and L. Canioni, “Third harmonic generation in periodically poled crystals,” Proc. SPIE 7917, 79171C (2011).
[CrossRef]

Emanueli, S.

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
[CrossRef]

Feynman, R. P.

R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).
[CrossRef]

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Ganany-Padowicz, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Grischkowsky, D.

D. Grischkowsky, M. M. T. Loy, and P. F. Liao, “Adiabatic following model for two-photon transitions: nonlinear mixing and pulse propagation,” Phys. Rev. A 12, 2514–2533 (1975).
[CrossRef]

Hellwarth, R. W.

R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).
[CrossRef]

Hioe, F. T.

F. T. Hioe, “Dynamic symmetries in quantum electronics,” Phys. Rev. A 28, 879–886 (1983).
[CrossRef]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
[CrossRef]

Ito, R.

Juwiler, I.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Keeler, J.

J. Keeler, Understanding NMR Spectroscopy (John Wiley & Sons, 2005).

Kitamoto, A.

Kivshar, Y. S.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Kondo, T.

Liao, P. F.

D. Grischkowsky, M. M. T. Loy, and P. F. Liao, “Adiabatic following model for two-photon transitions: nonlinear mixing and pulse propagation,” Phys. Rev. A 12, 2514–2533 (1975).
[CrossRef]

Loy, M. M. T.

D. Grischkowsky, M. M. T. Loy, and P. F. Liao, “Adiabatic following model for two-photon transitions: nonlinear mixing and pulse propagation,” Phys. Rev. A 12, 2514–2533 (1975).
[CrossRef]

Oron, D.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[CrossRef] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Prabhudesai, V.

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Saltiel, S. M.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Shirane, M.

Shoji, I.

Shore, B. W.

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 15–29 (1998).
[CrossRef]

Silberberg, Y.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[CrossRef] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Suchowski, H.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[CrossRef] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Sukhorukov, A. A.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Tannor, D.

D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, 2007).

Trallero-Herrero, C.

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75, 063401 (2007).
[CrossRef]

Vernon, F. L.

R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).
[CrossRef]

Vitanov, N. V.

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 15–29 (1998).
[CrossRef]

Weinacht, T. C.

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75, 063401 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[CrossRef]

Appl. Phys. Lett.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

C. R. Physique

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Physique 8, 180–198 (2007).
[CrossRef]

Eur. Phys. J. D

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4, 15–29 (1998).
[CrossRef]

J. Appl. Phys.

R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev.

F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946).
[CrossRef]

Phys. Rev. A

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[CrossRef]

D. Grischkowsky, M. M. T. Loy, and P. F. Liao, “Adiabatic following model for two-photon transitions: nonlinear mixing and pulse propagation,” Phys. Rev. A 12, 2514–2533 (1975).
[CrossRef]

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75, 063401 (2007).
[CrossRef]

F. T. Hioe, “Dynamic symmetries in quantum electronics,” Phys. Rev. A 28, 879–886 (1983).
[CrossRef]

Proc. SPIE

J. C. Delagnes and L. Canioni, “Third harmonic generation in periodically poled crystals,” Proc. SPIE 7917, 79171C (2011).
[CrossRef]

Prog. Opt.

S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic Press, 2008).

D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, 2007).

J. Keeler, Understanding NMR Spectroscopy (John Wiley & Sons, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Numerically simulated intensities of the 3010nm input wave (red dashed line), 452nm output wave (blue dash-dotted line) and 786nm intermediate wave (green solid line). Introducing a 10cm−1 absorption at 786nm decreases the 452nm intensity by just 0.5%. Inset: close-up view of the intermediate wave over 34.4μm. Shading indicates poling. (b) Analytically calculated photon conversion efficiency vs. the two-photon phase-mismatch. The difference between the peak efficiencies phase-mismatches is the Stark shift.

Fig. 2.
Fig. 2.

Experimental apparatus.

Fig. 3.
Fig. 3.

Blue dots are experimentally measured 452nm output power vs. (a) crystal temperature (b) c-polarized pump power. The green line was analytically calculated by Eq. (5).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d dz [ A 1 A 2 A 3 ] = i [ 0 σ 12 e i Δ k 1 z 0 σ 21 e i Δ k 1 z 0 σ 23 e i Δ k 2 z 0 σ 32 e i Δ k 2 z 0 ] [ A 1 A 2 A 3 ]
A 2 = [ i σ 21 A 1 exp ( i Δ k 1 z ) + i σ 23 A 3 exp ( i Δ k 2 z ) ] dz σ 21 Δ k 1 exp ( i Δ k 1 z ) A 1 σ 23 Δ k 2 exp ( i Δ k 2 z ) A 3
d dz [ A ˜ 1 A ˜ 3 ] = i [ Δ k eff / 2 σ 12 σ 23 / Δ k 2 σ 21 σ 32 / Δ k 1 Δ k eff / 2 ] [ A ˜ 1 A ˜ 3 ]
Δ k eff = Δ k 1 + Δ k 2 + σ 12 σ 21 / Δ k 1 + σ 23 σ 32 / Δ k 2
A ˜ 3 ( z ) = ( K 3 / κ ) A ˜ 1 ( 0 ) sin ( κ z ) exp ( i Δ k eff z / 2 )

Metrics