Abstract

A transmission-grating-modulated time-resolved pump-probe absorption spectroscopy is developed and formularized. The spectroscopy combines normal time-resolved pump-probe absorption spectroscopy with a binary transmission grating, is sensitive to the spatiotemporal evolution of photoinjected carriers, and has extensive applicability in the study of diffusion transport dynamics of photoinjected carriers. This spectroscopy has many advantages over reported optical methods to measure diffusion dynamics, such as simple experimental setup and operation, and high detection sensitivity. The measurement of diffusion dynamics is demonstrated on bulk intrinsic GaAs films. A carrier density dependence of carrier diffusion coefficient is obtained and agrees well with reported results.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nargelas, K. Jarašiūnas, K. Bertulis, and V. Pačebutas, “Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique,” Appl. Phys. Lett. 98(8), 082115 (2011).
    [CrossRef]
  2. R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
    [CrossRef]
  3. H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B Condens. Matter 46(20), 13461–13470 (1992).
    [CrossRef] [PubMed]
  4. B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
    [CrossRef]
  5. F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
    [CrossRef]
  6. L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
    [CrossRef]
  7. N. Gedik and J. Orenstein, “Absolute phase measurement in heterodyne detection of transient gratings,” Opt. Lett. 29(18), 2109–2111 (2004).
    [CrossRef] [PubMed]
  8. A. Miller, R. J. Manning, P. K. Milsom, D. C. Hutchings, D. W. Crust, and K. Woodbridge, “Transient grating studies of excitonic optical nonlinearities in GaAs/AlGaAs multiple quantum well structures,” J. Opt. Soc. Am. B 6, 567–578 (1989).
    [CrossRef]
  9. K. Jarasiunas and N. Lovergine, “Characterization of bulk crystals and structures by light-induced transient grating technique,” Mater. Sci. Eng. B 91–92, 100–104 (2002).
    [CrossRef]
  10. B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
    [CrossRef]
  11. J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B 26(4), 2147–2158 (1982).
    [CrossRef]
  12. P. Borowik and J. L. Thobel, “Monte Carlo calculation of diffusion coefficients in degenerate bulk GaAs,” Semicond. Sci. Technol. 14(5), 450–453 (1999).
    [CrossRef]
  13. K. Katayama, M. Yamaguchi, and T. Sawada, “Lens-free heterodyne detection of transient grating experiments,” Appl. Phys. Lett. 82(17), 2775 (2003).
    [CrossRef]
  14. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
    [CrossRef]
  15. T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
    [CrossRef]

2011

S. Nargelas, K. Jarašiūnas, K. Bertulis, and V. Pačebutas, “Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique,” Appl. Phys. Lett. 98(8), 082115 (2011).
[CrossRef]

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

2010

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

2004

N. Gedik and J. Orenstein, “Absolute phase measurement in heterodyne detection of transient gratings,” Opt. Lett. 29(18), 2109–2111 (2004).
[CrossRef] [PubMed]

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
[CrossRef]

2003

K. Katayama, M. Yamaguchi, and T. Sawada, “Lens-free heterodyne detection of transient grating experiments,” Appl. Phys. Lett. 82(17), 2775 (2003).
[CrossRef]

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

2002

K. Jarasiunas and N. Lovergine, “Characterization of bulk crystals and structures by light-induced transient grating technique,” Mater. Sci. Eng. B 91–92, 100–104 (2002).
[CrossRef]

1999

P. Borowik and J. L. Thobel, “Monte Carlo calculation of diffusion coefficients in degenerate bulk GaAs,” Semicond. Sci. Technol. 14(5), 450–453 (1999).
[CrossRef]

1997

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

1992

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B Condens. Matter 46(20), 13461–13470 (1992).
[CrossRef] [PubMed]

1989

1984

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
[CrossRef]

1982

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B 26(4), 2147–2158 (1982).
[CrossRef]

Aleksiejunas, R.

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

Baird, L.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

Bertulis, K.

S. Nargelas, K. Jarašiūnas, K. Bertulis, and V. Pačebutas, “Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique,” Appl. Phys. Lett. 98(8), 082115 (2011).
[CrossRef]

Borowik, P.

P. Borowik and J. L. Thobel, “Monte Carlo calculation of diffusion coefficients in degenerate bulk GaAs,” Semicond. Sci. Technol. 14(5), 450–453 (1999).
[CrossRef]

Chemla, D. S.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
[CrossRef]

Cole, R. A.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

Crust, D. W.

Donegan, J. F.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Fewer, D. T.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Gedik, N.

Gossard, A. C.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
[CrossRef]

Haegel, N. M.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

Heffernan, J. F.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Hegarty, J.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Hewlett, S. J.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Hino, T.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Hutchings, D. C.

Ishibashi, A.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Jarasiunas, K.

K. Jarasiunas and N. Lovergine, “Characterization of bulk crystals and structures by light-induced transient grating technique,” Mater. Sci. Eng. B 91–92, 100–104 (2002).
[CrossRef]

Jarašiunas, K.

S. Nargelas, K. Jarašiūnas, K. Bertulis, and V. Pačebutas, “Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique,” Appl. Phys. Lett. 98(8), 082115 (2011).
[CrossRef]

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

Jordan, C.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Katayama, K.

K. Katayama, M. Yamaguchi, and T. Sawada, “Lens-free heterodyne detection of transient grating experiments,” Appl. Phys. Lett. 82(17), 2775 (2003).
[CrossRef]

Lai, T.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
[CrossRef]

Lei, L.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
[CrossRef]

Li, Q. M.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

Lin, W.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
[CrossRef]

Liu, L.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
[CrossRef]

Logue, F. P.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Lovergine, N.

K. Jarasiunas and N. Lovergine, “Characterization of bulk crystals and structures by light-induced transient grating technique,” Mater. Sci. Eng. B 91–92, 100–104 (2002).
[CrossRef]

Malinauskas, T.

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

Manning, R. J.

McCabe, E. M.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Miller, A.

Miller, D. A. B.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
[CrossRef]

Milsom, P. K.

Morkoç, H.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B Condens. Matter 46(20), 13461–13470 (1992).
[CrossRef] [PubMed]

Nakano, K.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Nargelas, S.

S. Nargelas, K. Jarašiūnas, K. Bertulis, and V. Pačebutas, “Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique,” Appl. Phys. Lett. 98(8), 082115 (2011).
[CrossRef]

Ong, C. P.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

Orenstein, J.

Pacebutas, V.

S. Nargelas, K. Jarašiūnas, K. Bertulis, and V. Pačebutas, “Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique,” Appl. Phys. Lett. 98(8), 082115 (2011).
[CrossRef]

Rees, P.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Ruzicka, B. A.

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

Sakai, S.

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

Samassekou, H.

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

Sawada, T.

K. Katayama, M. Yamaguchi, and T. Sawada, “Lens-free heterodyne detection of transient grating experiments,” Appl. Phys. Lett. 82(17), 2775 (2003).
[CrossRef]

Shou, Q.

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
[CrossRef]

Smith, P. W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
[CrossRef]

Sudžius, M.

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

Talin, A. A.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

Taniguchi, S.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

Thobel, J. L.

P. Borowik and J. L. Thobel, “Monte Carlo calculation of diffusion coefficients in degenerate bulk GaAs,” Semicond. Sci. Technol. 14(5), 450–453 (1999).
[CrossRef]

Vaitkus, J.

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

van Driel, H. M.

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B 26(4), 2147–2158 (1982).
[CrossRef]

Wake, D. R.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B Condens. Matter 46(20), 13461–13470 (1992).
[CrossRef] [PubMed]

Wang, G. T.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

Werake, L. K.

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

Wiegmann, W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
[CrossRef]

Wolfe, J. P.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B Condens. Matter 46(20), 13461–13470 (1992).
[CrossRef] [PubMed]

Woodbridge, K.

Yamaguchi, M.

K. Katayama, M. Yamaguchi, and T. Sawada, “Lens-free heterodyne detection of transient grating experiments,” Appl. Phys. Lett. 82(17), 2775 (2003).
[CrossRef]

Yoon, H. W.

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B Condens. Matter 46(20), 13461–13470 (1992).
[CrossRef] [PubMed]

Young, J. F.

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B 26(4), 2147–2158 (1982).
[CrossRef]

Zhao, H.

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

Appl. Phys. Lett.

S. Nargelas, K. Jarašiūnas, K. Bertulis, and V. Pačebutas, “Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique,” Appl. Phys. Lett. 98(8), 082115 (2011).
[CrossRef]

R. Aleksiejūnas, M. Sūdžius, T. Malinauskas, J. Vaitkus, K. Jarašiūnas, and S. Sakai, “Determination of free carrier bipolar diffusion coefficient and surface recombination velocity of undoped GaN epilayers,” Appl. Phys. Lett. 83(6), 1157–1159 (2003).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. M. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN, and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett. 98(13), 132104 (2011).
[CrossRef]

B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97(26), 262119 (2010).
[CrossRef]

K. Katayama, M. Yamaguchi, and T. Sawada, “Lens-free heterodyne detection of transient grating experiments,” Appl. Phys. Lett. 82(17), 2775 (2003).
[CrossRef]

T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, “Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells,” Appl. Phys. Lett. 85(18), 4040–4042 (2004).
[CrossRef]

IEEE J. Quantum Electron.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. 20(3), 265–275 (1984).
[CrossRef]

J. Appl. Phys.

F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81(1), 536–538 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Sci. Eng. B

K. Jarasiunas and N. Lovergine, “Characterization of bulk crystals and structures by light-induced transient grating technique,” Mater. Sci. Eng. B 91–92, 100–104 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. B

J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: Many-body effects,” Phys. Rev. B 26(4), 2147–2158 (1982).
[CrossRef]

Phys. Rev. B Condens. Matter

H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B Condens. Matter 46(20), 13461–13470 (1992).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

P. Borowik and J. L. Thobel, “Monte Carlo calculation of diffusion coefficients in degenerate bulk GaAs,” Semicond. Sci. Technol. 14(5), 450–453 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) The schematic of transmission-grating-modulated pump-probe spectroscopy setup. M1~M5 denote mirrors, BS the beam splitter, filter the neutral attenuator and L means a lens. (b) Pump-excited initial carrier distribution in the sample at y = 0 cross section.

Fig. 2
Fig. 2

Transient transmission traces change with grating slit width (a). Transient differential transmission profiles with no gratings (b) and with a transmission grating (c) for a series of carrier concentration N. The arrow points to the direction of carrier concentration increase. All profiles are shifted in x and/or y axis for clarity. Solid lines denote best fitting in (a).

Fig. 3
Fig. 3

(a) Excited carrier density dependence of carrier lifetime and diffusion coefficient. (b) Excited carrier density dependence of carrier diffusion length. The scattered points are from experimental measurements, while red solid lines are guides for eye.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N(r,t) t = D a 2 N(r,t) N(r,t) τ r ,
α(r,t) α 0 (1 N(r,t) N s ),
I(r,t)= I 0 (r) T G (r) e α(r,t)L ,
ΔI(r,t)=I(r,t) I 0 (r) T G (r) e α 0 L =C I 0 (r) T G (r)N(r,t),
ΔP(t)= + + ΔI(r,t)dxdy= C + + I 0 (r) T G (r)N(r,t)dxdy ,

Metrics