S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]
M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
K. Lai and J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30(1), 108–114 (1994).
[Crossref]
V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref]
[PubMed]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref]
[PubMed]
C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]
C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]
Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[Crossref]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref]
[PubMed]
C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]
S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[Crossref]
Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref]
[PubMed]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]
K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[Crossref]
K. Lai and J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron. 30(1), 108–114 (1994).
[Crossref]
S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[Crossref]
Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]
S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]
C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004).
[Crossref]
K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[Crossref]
K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[Crossref]
Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]
Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[Crossref]
Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[Crossref]
V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18(16), 16973–16988 (2010).
[Crossref]
[PubMed]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]
K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[Crossref]
S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol. 14(6), 1081–1089 (1996).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett. 74(8), 1072–1074 (1999).
[Crossref]
K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]
M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]
Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]
S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett. 90(15), 151121 (2007).
[Crossref]
Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[Crossref]
K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys. 73(1), 21–27 (1993).
[Crossref]
Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res. 93–94, 43–48 (2010).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]
Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev. 44(12), 2167–2173 (1997).
[Crossref]
Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[Crossref]
Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref]
[PubMed]
M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton. 5(1), 051824 (2011).
[Crossref]
R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett. 86(3), 033502 (2005).
[Crossref]