Abstract

The internal energy flow in a light beam can be divided into the “orbital” and “spin” parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Padgett and L. Allen, “The Poynting vector in Laguerre–Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
    [CrossRef]
  2. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
    [CrossRef]
  3. M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000).
    [CrossRef]
  4. V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Opt. Commun. 198(1-3), 49–56 (2001).
    [CrossRef]
  5. J. Lekner, “Phase and transport velocities in particle and electromagnetic beams,” J. Opt. A, Pure Appl. Opt. 4(5), 491–499 (2002).
    [CrossRef]
  6. J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A, Pure Appl. Opt. 5(1), 6–14 (2003).
    [CrossRef]
  7. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
    [CrossRef]
  8. A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
    [CrossRef] [PubMed]
  9. I. Mokhun, A. Mokhun, and J. Viktorovskaya, Singularities of the Poynting vector and the structure of optical fieldProc. SPIE 6254, 625409, 625409-10 (2006).
    [CrossRef]
  10. I. I. Mokhun, “Introduction to linear singular optics,” in Optical correlation techniques and applications (Bellingham: SPIE Press PM168, 2007) pp. 1–132.
  11. M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009).
    [CrossRef]
  12. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
    [CrossRef]
  13. R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
    [CrossRef]
  14. A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
    [CrossRef]
  15. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
    [CrossRef]
  16. A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
    [CrossRef]
  17. A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘Spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons. Applications of Light with Orbital Angular Momentum (Weinheim: Wiley-VCH, 2011), pp. 13–24.
  18. A. Ya. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A, Pure Appl. Opt. 11(9), 094003 (2009).
    [CrossRef]
  19. A. Ya. Bekshaev, “Role of azimuthal energy flows in the geometric spin Hall effect of light,” arXiv:1106.0982v1 [physics.optics] (6 Jun 2011).
  20. K. Yu. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [CrossRef] [PubMed]
  21. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [CrossRef] [PubMed]
  22. A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
    [CrossRef] [PubMed]
  23. A. Ya. Bekshaev, “Transverse energy flow and the “running” behaviour of the instantaneous field distribution of a light beam,” arXiv:1108.0784 [physics.optics] (3 Aug 2011).
  24. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [CrossRef] [PubMed]
  25. V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
    [CrossRef]
  26. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [CrossRef] [PubMed]
  27. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
    [CrossRef]
  28. A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
    [CrossRef]
  29. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
    [CrossRef]
  30. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
    [CrossRef]
  31. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38(14), 3112–3117 (1999).
    [CrossRef] [PubMed]
  32. O. V. Angelsky, S. B. Yermolenko, C. Yu. Zenkova, and A. O. Angelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47(29), 5492–5499 (2008).
    [PubMed]
  33. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19(2), 660–672 (2011).
    [CrossRef] [PubMed]
  34. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (London, Wiley-Interscience, 1975).
  35. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (Singapore: Hackensack, NJ: World Scientific, 2006).
  36. X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
    [CrossRef] [PubMed]
  37. S. Yan, B. Yao, and M. Lei, “Comment on “optical orbital angular momentum from the curl of polarization”,” Phys. Rev. Lett. 106(18), 189301, author reply 189302 (2011).
    [CrossRef] [PubMed]

2011

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19(2), 660–672 (2011).
[CrossRef] [PubMed]

S. Yan, B. Yao, and M. Lei, “Comment on “optical orbital angular momentum from the curl of polarization”,” Phys. Rev. Lett. 106(18), 189301, author reply 189302 (2011).
[CrossRef] [PubMed]

2010

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

2009

A. Ya. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A, Pure Appl. Opt. 11(9), 094003 (2009).
[CrossRef]

M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009).
[CrossRef]

A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[CrossRef] [PubMed]

2008

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

O. V. Angelsky, S. B. Yermolenko, C. Yu. Zenkova, and A. O. Angelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47(29), 5492–5499 (2008).
[PubMed]

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

2007

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

2006

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[CrossRef] [PubMed]

A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
[CrossRef] [PubMed]

I. Mokhun, A. Mokhun, and J. Viktorovskaya, Singularities of the Poynting vector and the structure of optical fieldProc. SPIE 6254, 625409, 625409-10 (2006).
[CrossRef]

2004

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

2003

J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A, Pure Appl. Opt. 5(1), 6–14 (2003).
[CrossRef]

2002

J. Lekner, “Phase and transport velocities in particle and electromagnetic beams,” J. Opt. A, Pure Appl. Opt. 4(5), 491–499 (2002).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

2001

V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Opt. Commun. 198(1-3), 49–56 (2001).
[CrossRef]

2000

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

1999

1995

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre–Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

1936

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[CrossRef]

Aiello, A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[CrossRef] [PubMed]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre–Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

Alonso, M. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Angelskaya, A. O.

Angelsky, O. V.

Bekshaev, A.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Bekshaev, A. Y.

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

Bekshaev, A. Ya.

A. Ya. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A, Pure Appl. Opt. 11(9), 094003 (2009).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
[CrossRef] [PubMed]

Berry, M. V.

M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009).
[CrossRef]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[CrossRef]

Bliokh, K.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Bliokh, K. Y.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Bliokh, K. Yu.

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[CrossRef] [PubMed]

Bliokh, Y. P.

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[CrossRef] [PubMed]

Chen, J.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Cristobal, G.

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

Ding, J.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

Dominikov, N. N.

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Fernandez-Nieves, A.

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Gorshkov, V. N.

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Gorsky, M. P.

Guo, C.-S.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

Hanson, S. G.

Heckenberg, N. R.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[CrossRef] [PubMed]

Jeffries, G. D. M.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Khrobatin, R.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[CrossRef] [PubMed]

Lei, M.

S. Yan, B. Yao, and M. Lei, “Comment on “optical orbital angular momentum from the curl of polarization”,” Phys. Rev. Lett. 106(18), 189301, author reply 189302 (2011).
[CrossRef] [PubMed]

Lekner, J.

J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A, Pure Appl. Opt. 5(1), 6–14 (2003).
[CrossRef]

J. Lekner, “Phase and transport velocities in particle and electromagnetic beams,” J. Opt. A, Pure Appl. Opt. 4(5), 491–499 (2002).
[CrossRef]

Lenstra, D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

Leuchs, G.

A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[CrossRef] [PubMed]

Li, Y.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

Lindlein, N.

A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[CrossRef] [PubMed]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Maksimyak, A. P.

Maksimyak, P. P.

Marienko, I. G.

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Marquardt, Ch.

A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[CrossRef] [PubMed]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Mokhun, A.

I. Mokhun, A. Mokhun, and J. Viktorovskaya, Singularities of the Poynting vector and the structure of optical fieldProc. SPIE 6254, 625409, 625409-10 (2006).
[CrossRef]

Mokhun, I.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

I. Mokhun, A. Mokhun, and J. Viktorovskaya, Singularities of the Poynting vector and the structure of optical fieldProc. SPIE 6254, 625409, 625409-10 (2006).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Ostrovskaya, E. A.

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre–Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

Pas’ko, V. A.

V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Opt. Commun. 198(1-3), 49–56 (2001).
[CrossRef]

Rubinsztein-Dunlop, H.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

Schouten, H. F.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

Soskin, M.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

Soskin, M. S.

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006).
[CrossRef] [PubMed]

V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Opt. Commun. 198(1-3), 49–56 (2001).
[CrossRef]

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Spalding, G. C.

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Stilgoe, A. B.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

Summers, M. D.

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

Sviridova, S. V.

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

Tudor, T.

Vasnetsov, M. V.

V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Opt. Commun. 198(1-3), 49–56 (2001).
[CrossRef]

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Viktorovskaya, J.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

I. Mokhun, A. Mokhun, and J. Viktorovskaya, Singularities of the Poynting vector and the structure of optical fieldProc. SPIE 6254, 625409, 625409-10 (2006).
[CrossRef]

Visser, T. D.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

Wang, H.-T.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

Wang, X.-L.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

Yan, S.

S. Yan, B. Yao, and M. Lei, “Comment on “optical orbital angular momentum from the curl of polarization”,” Phys. Rev. Lett. 106(18), 189301, author reply 189302 (2011).
[CrossRef] [PubMed]

Yao, B.

S. Yan, B. Yao, and M. Lei, “Comment on “optical orbital angular momentum from the curl of polarization”,” Phys. Rev. Lett. 106(18), 189301, author reply 189302 (2011).
[CrossRef] [PubMed]

Yermolenko, S. B.

Zenkova, C. Yu.

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Adv. Opt. Technol.

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
[CrossRef]

Appl. Opt.

J. Nanophoton.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

J. Opt.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Ya. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A, Pure Appl. Opt. 11(9), 094003 (2009).
[CrossRef]

M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009).
[CrossRef]

J. Lekner, “Phase and transport velocities in particle and electromagnetic beams,” J. Opt. A, Pure Appl. Opt. 4(5), 491–499 (2002).
[CrossRef]

J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A, Pure Appl. Opt. 5(1), 6–14 (2003).
[CrossRef]

V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004).
[CrossRef]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt.

H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004).
[CrossRef]

Opt. Commun.

V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Opt. Commun. 198(1-3), 49–56 (2001).
[CrossRef]

M. J. Padgett and L. Allen, “The Poynting vector in Laguerre–Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995).
[CrossRef]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000).
[CrossRef]

A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000).
[CrossRef]

Phys. Rev.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[CrossRef]

Phys. Rev. A

K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010).
[CrossRef]

Phys. Rev. Lett.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009).
[CrossRef] [PubMed]

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[CrossRef] [PubMed]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010).
[CrossRef] [PubMed]

S. Yan, B. Yao, and M. Lei, “Comment on “optical orbital angular momentum from the curl of polarization”,” Phys. Rev. Lett. 106(18), 189301, author reply 189302 (2011).
[CrossRef] [PubMed]

Proc. SPIE

A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006).
[CrossRef]

I. Mokhun, A. Mokhun, and J. Viktorovskaya, Singularities of the Poynting vector and the structure of optical fieldProc. SPIE 6254, 625409, 625409-10 (2006).
[CrossRef]

Science

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[CrossRef] [PubMed]

Ukr. J. Phys. Opt.

R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008).
[CrossRef]

Other

I. I. Mokhun, “Introduction to linear singular optics,” in Optical correlation techniques and applications (Bellingham: SPIE Press PM168, 2007) pp. 1–132.

A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘Spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons. Applications of Light with Orbital Angular Momentum (Weinheim: Wiley-VCH, 2011), pp. 13–24.

A. Ya. Bekshaev, “Role of azimuthal energy flows in the geometric spin Hall effect of light,” arXiv:1106.0982v1 [physics.optics] (6 Jun 2011).

A. Ya. Bekshaev, “Transverse energy flow and the “running” behaviour of the instantaneous field distribution of a light beam,” arXiv:1108.0784 [physics.optics] (3 Aug 2011).

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (London, Wiley-Interscience, 1975).

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (Singapore: Hackensack, NJ: World Scientific, 2006).

Supplementary Material (1)

» Media 1: AVI (17230 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics